These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization. Duong VT; Lin CC Macromol Biosci; 2023 Dec; 23(12):e2300213. PubMed ID: 37536347 [TBL] [Abstract][Full Text] [Related]
43. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing. Tan SH; Ngo ZH; Sci DB; Leavesley D; Liang K Tissue Eng Part B Rev; 2022 Feb; 28(1):160-181. PubMed ID: 33446047 [TBL] [Abstract][Full Text] [Related]
44. Bio-engineering a prevascularized human tri-layered skin substitute containing a hypodermis. Zimoch J; Zielinska D; Michalak-Micka K; Rütsche D; Böni R; Biedermann T; Klar AS Acta Biomater; 2021 Oct; 134():215-227. PubMed ID: 34303011 [TBL] [Abstract][Full Text] [Related]
45. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
46. An injectable and photocurable methacrylate-silk fibroin/nano-hydroxyapatite hydrogel for bone regeneration through osteoimmunomodulation. Zhou L; Chen D; Wu R; Li L; Shi T; Shangguang Z; Lin H; Chen G; Wang Z; Liu W Int J Biol Macromol; 2024 Apr; 263(Pt 1):129925. PubMed ID: 38311129 [TBL] [Abstract][Full Text] [Related]
47. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Chouhan D; Chakraborty B; Nandi SK; Mandal BB Acta Biomater; 2017 Jan; 48():157-174. PubMed ID: 27746359 [TBL] [Abstract][Full Text] [Related]
48. Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors. Hu P; Armato U; Freddi G; Chiarini A; Dal Prà I Cells; 2023 Jul; 12(14):. PubMed ID: 37508492 [No Abstract] [Full Text] [Related]
50. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. He X; Liu X; Yang J; Du H; Chai N; Sha Z; Geng M; Zhou X; He C Carbohydr Polym; 2020 Nov; 247():116689. PubMed ID: 32829817 [TBL] [Abstract][Full Text] [Related]
51. Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. Ghosh A; Bera AK; Singh V; Basu S; Pati F Biomater Adv; 2024 Dec; 165():214007. PubMed ID: 39216318 [TBL] [Abstract][Full Text] [Related]
53. Silk Fibroin Enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for Light-Based Three-Dimensional Bioprinting. Kim E; Seok JM; Bae SB; Park SA; Park WH Biomacromolecules; 2021 May; 22(5):1921-1931. PubMed ID: 33840195 [TBL] [Abstract][Full Text] [Related]
54. Simple and robust 3D bioprinting of full-thickness human skin tissue. Liu J; Zhou Z; Zhang M; Song F; Feng C; Liu H Bioengineered; 2022 Apr; 13(4):10087-10097. PubMed ID: 35412953 [TBL] [Abstract][Full Text] [Related]
55. Tailorable hydrogel of gelatin with silk fibroin and its activation/crosslinking for enhanced proliferation of fibroblast cells. Kulkarni G; Guha Ray P; Byram PK; Kaushal M; Dhara S; Das S Int J Biol Macromol; 2020 Dec; 164():4073-4083. PubMed ID: 32898545 [TBL] [Abstract][Full Text] [Related]
56. A 3D Printable Electroconductive Biocomposite Bioink Based on Silk Fibroin-Conjugated Graphene Oxide. Ajiteru O; Sultan MT; Lee YJ; Seo YB; Hong H; Lee JS; Lee H; Suh YJ; Ju HW; Lee OJ; Park HS; Jang M; Kim SH; Park CH Nano Lett; 2020 Sep; 20(9):6873-6883. PubMed ID: 32794720 [TBL] [Abstract][Full Text] [Related]
57. 3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin. Kim BS; Gao G; Kim JY; Cho DW Adv Healthc Mater; 2019 Apr; 8(7):e1801019. PubMed ID: 30358939 [TBL] [Abstract][Full Text] [Related]
58. Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing. Hao L; Zhao S; Hao S; He Y; Feng M; Zhou K; He Y; Yang J; Mao H; Gu Z Int J Biol Macromol; 2023 Jun; 240():124364. PubMed ID: 37044319 [TBL] [Abstract][Full Text] [Related]
59. Biomaterial Inks from Peptide-Functionalized Silk Fibers for 3D Printing of Futuristic Wound-Healing and Sensing Materials. Ceccarini MR; Palazzi V; Salvati R; Chiesa I; De Maria C; Bonafoni S; Mezzanotte P; Codini M; Pacini L; Errante F; Rovero P; Morabito A; Beccari T; Roselli L; Valentini L Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674467 [TBL] [Abstract][Full Text] [Related]
60. Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Li Z; Zhang X; Yuan T; Zhang Y; Luo C; Zhang J; Liu Y; Fan W Tissue Eng Part A; 2020 Aug; 26(15-16):886-895. PubMed ID: 32031056 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]