BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37121493)

  • 61. Multi-scale simulations of polymeric nanoparticle aggregation during rapid solvent exchange.
    Li N; Nikoubashman A; Panagiotopoulos AZ
    J Chem Phys; 2018 Aug; 149(8):084904. PubMed ID: 30193496
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spray drying OZ439 nanoparticles to form stable, water-dispersible powders for oral malaria therapy.
    Ristroph KD; Feng J; McManus SA; Zhang Y; Gong K; Ramachandruni H; White CE; Prud'homme RK
    J Transl Med; 2019 Mar; 17(1):97. PubMed ID: 30902103
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Entrapment of metal nanoparticles in polymer stomatocytes.
    Wilson DA; Nolte RJ; van Hest JC
    J Am Chem Soc; 2012 Jun; 134(24):9894-7. PubMed ID: 22676061
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.
    Chan JM; Zhang L; Yuet KP; Liao G; Rhee JW; Langer R; Farokhzad OC
    Biomaterials; 2009 Mar; 30(8):1627-34. PubMed ID: 19111339
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Homopolymer self-assembly into stable nanoparticles: concerted action of hydrophobic association and hydrogen bonding in thermoresponsive poly(alkylacrylic acid)s.
    Sedlák M
    J Phys Chem B; 2012 Mar; 116(8):2356-64. PubMed ID: 22280359
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Improved paclitaxel delivery with PEG-b-PLA/zein nanoparticles prepared via flash nanoprecipitation.
    Ye W; Zhu F; Cai Y; Wang L; Zhang G; Zhao G; Chu X; Shuai Q; Yan Y
    Int J Biol Macromol; 2022 Nov; 221():486-495. PubMed ID: 36087755
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fabrication of Charge-Conversion Nanoparticles for Cancer Imaging by Flash Nanoprecipitation.
    Li M; Xu Y; Sun J; Wang M; Yang D; Guo X; Song H; Cao S; Yan Y
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10752-10760. PubMed ID: 29470042
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.
    Chen Y; Yoon YJ; Pang X; He Y; Jung J; Feng C; Zhang G; Lin Z
    Small; 2016 Dec; 12(48):6714-6723. PubMed ID: 27805778
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery.
    He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ
    Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin.
    He Z; Liu Z; Tian H; Hu Y; Liu L; Leong KW; Mao HQ; Chen Y
    Nanoscale; 2018 Feb; 10(7):3307-3319. PubMed ID: 29384554
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation.
    Liu D; Zhang H; Cito S; Fan J; Mäkilä E; Salonen J; Hirvonen J; Sikanen TM; Weitz DA; Santos HA
    Nano Lett; 2017 Feb; 17(2):606-614. PubMed ID: 28060521
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing.
    Valencia PM; Basto PA; Zhang L; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2010 Mar; 4(3):1671-9. PubMed ID: 20166699
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Polymer conjugate-based nanomaterials for drug delivery.
    Tran PH; Tran TT; Vo TV
    J Nanosci Nanotechnol; 2014 Jan; 14(1):815-27. PubMed ID: 24730300
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Directed Assembly of Soft Colloids through Rapid Solvent Exchange.
    Nikoubashman A; Lee VE; Sosa C; Prud'homme RK; Priestley RD; Panagiotopoulos AZ
    ACS Nano; 2016 Jan; 10(1):1425-33. PubMed ID: 26692293
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineered Polymer-Supported Biorthogonal Nanocatalysts Using Flash Nanoprecipitation.
    Huang R; Hirschbiegel CM; Zhang X; Gupta A; Fedeli S; Xu Y; Rotello VM
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31594-31600. PubMed ID: 35802797
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lipid-core/polymer-shell hybrid nanoparticles: synthesis and characterization by fluorescence labeling and electrophoresis.
    Bou S; Wang X; Anton N; Bouchaala R; Klymchenko AS; Collot M
    Soft Matter; 2020 May; 16(17):4173-4181. PubMed ID: 32286601
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design.
    Vuddanda PR; Mishra A; Singh SK; Singh S
    Pharm Dev Technol; 2015; 20(5):579-87. PubMed ID: 24831535
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Controlling Size and Fluorescence of Dye-Loaded Polymer Nanoparticles through Polymer Design.
    Rosiuk V; Runser A; Klymchenko A; Reisch A
    Langmuir; 2019 May; 35(21):7009-7017. PubMed ID: 31081637
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Polydopamine Copolymers for Stable Drug Nanoprecipitation.
    Niezni D; Harris Y; Sason H; Avrashami M; Shamay Y
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.