These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3712213)

  • 1. Prediction of serum concentration time course of quinidine in human using a physiologically based pharmacokinetic model developed from the rat.
    Harashima H; Sawada Y; Sugiyama Y; Iga T; Hanano M
    J Pharmacobiodyn; 1986 Feb; 9(2):132-8. PubMed ID: 3712213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the disposition of nine weakly acidic and six weakly basic drugs in humans from pharmacokinetic parameters in rats.
    Sawada Y; Hanano M; Sugiyama Y; Iga T
    J Pharmacokinet Biopharm; 1985 Oct; 13(5):477-92. PubMed ID: 3938813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the plasma concentration time courses of various drugs in humans based on data from rats.
    Sawada Y; Harashima H; Hanano M; Sugiyama Y; Iga T
    J Pharmacobiodyn; 1985 Sep; 8(9):757-66. PubMed ID: 4087135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of amiodarone on the pharmacokinetics of phenytoin, quinidine, and lidocaine in the rat.
    Fruncillo RJ; Kozin SH; DiGregorio GJ
    Res Commun Chem Pathol Pharmacol; 1985 Dec; 50(3):451-4. PubMed ID: 4081327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disposition of antipyrine and phenytoin correlated with age and liver volume in man.
    Bach B; Hansen JM; Kampmann JP; Rasmussen SN; Skovsted L
    Clin Pharmacokinet; 1981; 6(5):389-96. PubMed ID: 7333060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of rifampicin on drug metabolism: differences between hexobarbital and antipyrine.
    Breimer DD; Zilly W; Richter E
    Clin Pharmacol Ther; 1977 Apr; 21(4):470-81. PubMed ID: 849678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacokinetics of drugs in rabbits with experimental acute renal failure.
    Van Peer A; Belpaire F; Bogaert M
    Pharmacology; 1978; 17(6):307-14. PubMed ID: 733890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of nonlinear tissue distribution of quinidine in rats by physiologically based pharmacokinetics.
    Harashima H; Sawada Y; Sugiyama Y; Iga T; Hanano M
    J Pharmacokinet Biopharm; 1985 Aug; 13(4):425-40. PubMed ID: 4087170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between the in vivo metabolism of hexobarbital and antipyrine in rats.
    van der Graaff M; Vermeulen NP; Joeres RP; Vlietstra T; Breimer DD
    J Pharmacol Exp Ther; 1983 Nov; 227(2):459-65. PubMed ID: 6631725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between the in vivo metabolism of hexobarbital and antipyrine in rats with a portacaval shunt.
    van der Graaff M; Vermeulen NP; Joeres RP; Breimer DD
    Pharmacology; 1984; 29(2):99-109. PubMed ID: 6473507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of urea on hexobarbital and antipyrine disposition in rats.
    Valentovic M; Bachmann K
    Pharmacology; 1980; 21(3):167-74. PubMed ID: 7413718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative physiologically based pharmacokinetics of hexobarbital, phenobarbital and thiopental in the rat.
    Igari Y; Sugiyama Y; Awazu S; Hanano M
    J Pharmacokinet Biopharm; 1982 Feb; 10(1):53-75. PubMed ID: 7069578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance.
    Rane A; Wilkinson GR; Shand DG
    J Pharmacol Exp Ther; 1977 Feb; 200(2):420-4. PubMed ID: 839445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-dependent kinetics of quinidine in the perfused rat liver preparation. Kinetics of formation of active metabolites.
    Yu VC; de Lamirande E; Horning MG; Pang KS
    Drug Metab Dispos; 1982; 10(6):568-72. PubMed ID: 6130901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monthly variations in the clearance of antipyrine in the rat.
    Bélanger PM; Doré F; Labrecque G
    Res Commun Chem Pathol Pharmacol; 1984 Oct; 46(1):53-65. PubMed ID: 6505390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of hexobarbital and antipyrine metabolism by rifampicin treatment in the pig.
    van den Broek JM; Teunissen MW; Breimer DD
    Drug Metab Dispos; 1981; 9(6):541-4. PubMed ID: 6120813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of fenfluramine on disposition and rate of antipyrine elimination.
    O'Malley K; Stevenson IH; West M
    Pharmacology; 1975; 13(1):12-9. PubMed ID: 1153500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Influence of rifampicin on the metabolic clearance of galactose and antipyrine as compared with hexobarbital].
    Zilly W; Wernze H; Buchenau D; Breimer DD; Richter E
    Verh Dtsch Ges Inn Med; 1975; 81():1677-80. PubMed ID: 1227056
    [No Abstract]   [Full Text] [Related]  

  • 19. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.
    Ye M; Nagar S; Korzekwa K
    Biopharm Drug Dispos; 2016 Apr; 37(3):123-41. PubMed ID: 26531057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin.
    Boxenbaum H
    J Pharmacokinet Biopharm; 1980 Apr; 8(2):165-76. PubMed ID: 6107379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.