These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37122845)
21. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Lambie SC; Kelly WJ; Leahy SC; Li D; Reilly K; McAllister TA; Valle ER; Attwood GT; Altermann E Stand Genomic Sci; 2015; 10():57. PubMed ID: 26413197 [TBL] [Abstract][Full Text] [Related]
22. Methanogenesis in the Digestive Tracts of the Tropical Millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae). Horváthová T; Šustr V; Chroňáková A; Semanová S; Lang K; Dietrich C; Hubáček T; Ardestani MM; Lara AC; Brune A; Šimek M Appl Environ Microbiol; 2021 Jul; 87(15):e0061421. PubMed ID: 34020937 [TBL] [Abstract][Full Text] [Related]
23. Bioactive fractions from the pasture legume Biserrula pelecinus L. have an anti-methanogenic effect against key rumen methanogens. Banik BK; Durmic Z; Erskine W; Revell CK; Vadhanabhuti J; McSweeney CS; Padmanabha J; Flematti GR; Algreiby AA; Vercoe PE Anaerobe; 2016 Jun; 39():173-82. PubMed ID: 27060275 [TBL] [Abstract][Full Text] [Related]
24. Methanogenesis pathways of methanogens and their responses to substrates and temperature in sediments from the South Yellow Sea. Chen Y; Wu N; Liu C; Mi T; Li J; He X; Li S; Sun Z; Zhen Y Sci Total Environ; 2022 Apr; 815():152645. PubMed ID: 34998777 [TBL] [Abstract][Full Text] [Related]
25. A Reduced F Heryakusuma C; Susanti D; Yu H; Li Z; Purwantini E; Hettich RL; Orphan VJ; Mukhopadhyay B J Bacteriol; 2022 Jul; 204(7):e0007822. PubMed ID: 35695516 [TBL] [Abstract][Full Text] [Related]
26. Potential functional gene diversity involved in methanogenesis and methanogenic community structure in Indian buffalo (Bubalus bubalis) rumen. Singh KM; Patel AK; Shah RK; Reddy B; Joshi CG J Appl Genet; 2015 Aug; 56(3):411-26. PubMed ID: 25663664 [TBL] [Abstract][Full Text] [Related]
27. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Smith PE; Kelly AK; Kenny DA; Waters SM Front Vet Sci; 2022; 9():958340. PubMed ID: 36619952 [TBL] [Abstract][Full Text] [Related]
28. Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen. Kumar S; Treloar BP; Teh KH; McKenzie CM; Henderson G; Attwood GT; Waters SM; Patchett ML; Janssen PH Anaerobe; 2018 Dec; 54():31-38. PubMed ID: 30055268 [TBL] [Abstract][Full Text] [Related]
29. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570 [TBL] [Abstract][Full Text] [Related]
30. Diversity of rumen microbiota using metagenome sequencing and methane yield in Indian sheep fed on straw and concentrate diet. Malik PK; Trivedi S; Kolte AP; Sejian V; Bhatta R; Rahman H Saudi J Biol Sci; 2022 Aug; 29(8):103345. PubMed ID: 35770269 [TBL] [Abstract][Full Text] [Related]
31. Effect of dietary fiber on the methanogen community in the hindgut of Lantang gilts. Cao Z; Liang JB; Liao XD; Wright AD; Wu YB; Yu B Animal; 2016 Oct; 10(10):1666-76. PubMed ID: 27052363 [TBL] [Abstract][Full Text] [Related]
32. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Ng F; Kittelmann S; Patchett ML; Attwood GT; Janssen PH; Rakonjac J; Gagic D Environ Microbiol; 2016 Sep; 18(9):3010-21. PubMed ID: 26643468 [TBL] [Abstract][Full Text] [Related]
33. Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: Selection of strains and reactor performance evaluation. Yang Z; Wang W; Liu C; Zhang R; Liu G Water Res; 2019 May; 155():214-224. PubMed ID: 30849735 [TBL] [Abstract][Full Text] [Related]
34. Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Leahy SC; Kelly WJ; Ronimus RS; Wedlock N; Altermann E; Attwood GT Animal; 2013 Jun; 7 Suppl 2():235-43. PubMed ID: 23739466 [TBL] [Abstract][Full Text] [Related]
35. Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions. Altermann E; Reilly K; Young W; Ronimus RS; Muetzel S Front Microbiol; 2022; 13():816695. PubMed ID: 35359731 [TBL] [Abstract][Full Text] [Related]
36. Methane production and methanogen levels in steers that differ in residual gain. Freetly HC; Lindholm-Perry AK; Hales KE; Brown-Brandl TM; Kim M; Myer PR; Wells JE J Anim Sci; 2015 May; 93(5):2375-81. PubMed ID: 26020333 [TBL] [Abstract][Full Text] [Related]
37. Heterogeneous development of methanogens and the correlation with bacteria in the rumen and cecum of sika deer (Cervus nippon) during early life suggest different ecology relevance. Li Z; Wang X; Zhang T; Si H; Xu C; Wright AG; Li G BMC Microbiol; 2019 Jun; 19(1):129. PubMed ID: 31185894 [TBL] [Abstract][Full Text] [Related]
38. Effect of an anti-methanogenic supplement on enteric methane emission, fermentation, and whole rumen metagenome in sheep. Malik PK; Trivedi S; Kolte AP; Mohapatra A; Bhatta R; Rahman H Front Microbiol; 2022; 13():1048288. PubMed ID: 36478863 [TBL] [Abstract][Full Text] [Related]
39. Enhancing blackwater methane production by enriching hydrogenotrophic methanogens through hydrogen supplementation. Xu R; Xu S; Florentino AP; Zhang L; Yang Z; Liu Y Bioresour Technol; 2019 Apr; 278():481-485. PubMed ID: 30709767 [TBL] [Abstract][Full Text] [Related]
40. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Jeyanathan J; Martin C; Morgavi DP Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]