These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37122858)
1. Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative. Yeoh PSQ; Lai KW; Goh SL; Hasikin K; Wu X; Li P Front Bioeng Biotechnol; 2023; 11():1164655. PubMed ID: 37122858 [TBL] [Abstract][Full Text] [Related]
2. A comparative study for glioma classification using deep convolutional neural networks. Özcan H; Emiroğlu BG; Sabuncuoğlu H; Özdoğan S; Soyer A; Saygı T Math Biosci Eng; 2021 Jan; 18(2):1550-1572. PubMed ID: 33757198 [TBL] [Abstract][Full Text] [Related]
3. Automated detection of patellofemoral osteoarthritis from knee lateral view radiographs using deep learning: data from the Multicenter Osteoarthritis Study (MOST). Bayramoglu N; Nieminen MT; Saarakkala S Osteoarthritis Cartilage; 2021 Oct; 29(10):1432-1447. PubMed ID: 34245873 [TBL] [Abstract][Full Text] [Related]
4. Emergence of Deep Learning in Knee Osteoarthritis Diagnosis. Yeoh PSQ; Lai KW; Goh SL; Hasikin K; Hum YC; Tee YK; Dhanalakshmi S Comput Intell Neurosci; 2021; 2021():4931437. PubMed ID: 34804143 [TBL] [Abstract][Full Text] [Related]
5. Quantitative and Qualitative Analysis of 18 Deep Convolutional Neural Network (CNN) Models with Transfer Learning to Diagnose COVID-19 on Chest X-Ray (CXR) Images. Chow LS; Tang GS; Solihin MI; Gowdh NM; Ramli N; Rahmat K SN Comput Sci; 2023; 4(2):141. PubMed ID: 36624807 [TBL] [Abstract][Full Text] [Related]
6. An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD. Yazdan SA; Ahmad R; Iqbal N; Rizwan A; Khan AN; Kim DH Tomography; 2022 Jul; 8(4):1905-1927. PubMed ID: 35894026 [TBL] [Abstract][Full Text] [Related]
7. Differentiation between subchondral insufficiency fractures and advanced osteoarthritis of the knee using transfer learning and an ensemble of convolutional neural networks. Klontzas ME; Vassalou EE; Kakkos GA; Spanakis K; Zibis A; Marias K; Karantanas AH Injury; 2022 Jun; 53(6):2035-2040. PubMed ID: 35331475 [TBL] [Abstract][Full Text] [Related]
8. Diagnosis of focal liver lesions with deep learning-based multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging. Stollmayer R; Budai BK; Tóth A; Kalina I; Hartmann E; Szoldán P; Bérczi V; Maurovich-Horvat P; Kaposi PN World J Gastroenterol; 2021 Sep; 27(35):5978-5988. PubMed ID: 34629814 [TBL] [Abstract][Full Text] [Related]
9. Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks. Tiulpin A; Saarakkala S Diagnostics (Basel); 2020 Nov; 10(11):. PubMed ID: 33182830 [TBL] [Abstract][Full Text] [Related]
10. Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs. Üreten K; Maraş Y; Duran S; Gök K Mod Rheumatol; 2023 Jan; 33(1):202-206. PubMed ID: 34888699 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of convolutional neural network architectures for gastrointestinal lesions classification. Cuevas-Rodriguez EO; Galvan-Tejada CE; Maeda-Gutiérrez V; Moreno-Chávez G; Galván-Tejada JI; Gamboa-Rosales H; Luna-García H; Moreno-Baez A; Celaya-Padilla JM PeerJ; 2023; 11():e14806. PubMed ID: 36945355 [TBL] [Abstract][Full Text] [Related]
12. Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods. Üreten K; Arslan T; Gültekin KE; Demir AND; Özer HF; Bilgili Y Skeletal Radiol; 2020 Sep; 49(9):1369-1374. PubMed ID: 32248444 [TBL] [Abstract][Full Text] [Related]
13. Diagnosing the Severity of Knee Osteoarthritis Using Regression Scores From Artificial Intelligence Convolution Neural Networks. Fei M; Lu S; Chung JH; Hassan S; Elsissy J; Schneiderman BA Orthopedics; 2024; 47(5):e247-e254. PubMed ID: 39073041 [TBL] [Abstract][Full Text] [Related]
14. Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging. Awan MJ; Rahim MSM; Salim N; Rehman A; Nobanee H; Shabir H J Pers Med; 2021 Nov; 11(11):. PubMed ID: 34834515 [TBL] [Abstract][Full Text] [Related]
15. Osteo-NeT: An Automated System for Predicting Knee Osteoarthritis from X-ray Images Using Transfer-Learning-Based Neural Networks Approach. Alshamrani HA; Rashid M; Alshamrani SS; Alshehri AHD Healthcare (Basel); 2023 Apr; 11(9):. PubMed ID: 37174748 [TBL] [Abstract][Full Text] [Related]
16. Automatic detection and classification of knee osteoarthritis using deep learning approach. Abdullah SS; Rajasekaran MP Radiol Med; 2022 Apr; 127(4):398-406. PubMed ID: 35262842 [TBL] [Abstract][Full Text] [Related]
17. A discriminative shape-texture convolutional neural network for early diagnosis of knee osteoarthritis from X-ray images. Nasser Y; El Hassouni M; Hans D; Jennane R Phys Eng Sci Med; 2023 Jun; 46(2):827-837. PubMed ID: 37142813 [TBL] [Abstract][Full Text] [Related]
18. Unsupervised domain adaptation for automated knee osteoarthritis phenotype classification. Zhong J; Yao Y; Cahill DG; Xiao F; Li S; Lee J; Ho KK; Ong MT; Griffith JF; Chen W Quant Imaging Med Surg; 2023 Nov; 13(11):7444-7458. PubMed ID: 37969620 [TBL] [Abstract][Full Text] [Related]
19. Identifying Severity Grading of Knee Osteoarthritis from X-ray Images Using an Efficient Mixture of Deep Learning and Machine Learning Models. Ahmed SM; Mstafa RJ Diagnostics (Basel); 2022 Nov; 12(12):. PubMed ID: 36552945 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard. Zhang L; Li M; Zhou Y; Lu G; Zhou Q J Magn Reson Imaging; 2020 Dec; 52(6):1745-1752. PubMed ID: 32715584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]