These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37122984)
1. Intensive carbon combustion in sintering packed bed via steam spraying: An experimental study on carbon monoxide emission reduction. Sun CF; Zhou XG; Li G; Wang YF; Xie XR; Lyu XW; Xu J J Cent South Univ; 2023; 30(3):786-799. PubMed ID: 37122984 [TBL] [Abstract][Full Text] [Related]
2. Investigation on the application of by-product steam in iron ore sintering: performance and function mechanism. Wu Y; Fan X; Ji Z; Gan M; Zhou H; Li H; Chen X; Zhao Y; Zhang R; Lai R Environ Sci Pollut Res Int; 2022 Sep; 29(41):62698-62709. PubMed ID: 35411520 [TBL] [Abstract][Full Text] [Related]
3. The mechanism of NO Han S; Shao R; Wang L; Zhang X; Xuan C; Cheng X; Wang Z RSC Adv; 2024 Apr; 14(16):11007-11016. PubMed ID: 38586448 [TBL] [Abstract][Full Text] [Related]
4. Studies into the formation of PBDEs and PBDD/Fs in the iron ore sintering process. Drage DS; Aries E; Harrad S Sci Total Environ; 2014 Jul; 485-486():497-507. PubMed ID: 24742560 [TBL] [Abstract][Full Text] [Related]
5. Partial substitution of anthracite for coke breeze in iron ore sintering. Zhang X; Zhong Q; Liu C; Rao M; Peng Z; Li G; Jiang T Sci Rep; 2021 Jan; 11(1):1540. PubMed ID: 33452332 [TBL] [Abstract][Full Text] [Related]
6. Assimilative capacity approach for air pollution control in automotive engines through magnetic field-assisted combustion of hydrocarbons. Oommen LP; Narayanappa KG Environ Sci Pollut Res Int; 2021 Dec; 28(45):63661-63671. PubMed ID: 33392993 [TBL] [Abstract][Full Text] [Related]
7. Real-World Vehicle Emissions Characterization for the Shing Mun Tunnel in Hong Kong and Fort McHenry Tunnel in the United States. Wang X; Khlystov A; Ho KF; Campbell D; Chow JC; Kohl SD; Watson JG; Lee SF; Chen LA; Lu M; Ho SSH Res Rep Health Eff Inst; 2019 Mar; 2019(199):5-52. PubMed ID: 31663714 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the incipient smoke point for steam-/air-assisted and nonassisted flares. Chen DH; Alphones A J Air Waste Manag Assoc; 2019 Jan; 69(1):119-130. PubMed ID: 30230968 [TBL] [Abstract][Full Text] [Related]
9. The oxycoal process with cryogenic oxygen supply. Kather A; Scheffknecht G Naturwissenschaften; 2009 Sep; 96(9):993-1010. PubMed ID: 19495717 [TBL] [Abstract][Full Text] [Related]
10. Effects of Temperature, Operation Mode, and Steam Concentration on Alkali Release in Chemical Looping Conversion of Biomass-Experimental Investigation in a 10 kW Gogolev I; Soleimanisalim AH; Mei D; Lyngfelt A Energy Fuels; 2022 Sep; 36(17):9551-9570. PubMed ID: 36091479 [TBL] [Abstract][Full Text] [Related]
11. Reducing PAH emissions from the iron ore sintering process by optimizing its operation parameters. Chen YC; Tsai PJ; Mou JL Environ Sci Technol; 2009 Jun; 43(12):4459-65. PubMed ID: 19603662 [TBL] [Abstract][Full Text] [Related]
12. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process. Gan M; Ji Z; Fan X; Chen X; Zhou Y; Wang G; Tian Y; Jiang T J Hazard Mater; 2018 Jul; 353():381-392. PubMed ID: 29689519 [TBL] [Abstract][Full Text] [Related]
13. Experimental Study of NO Zan H; Chen X; Ma J; Liu D; Wu Y ACS Omega; 2020 Jul; 5(26):16037-16044. PubMed ID: 32656425 [TBL] [Abstract][Full Text] [Related]
14. [NOx and SO2 formation in the sintering process and influence of sintering material composition on NOx emissions]. Ren ZP; Zhu TL; Zhu TY; Lü D Huan Jing Ke Xue; 2014 Oct; 35(10):3669-73. PubMed ID: 25693368 [TBL] [Abstract][Full Text] [Related]
15. Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling. Yu Y; Zheng M; Li X; He X J Environ Sci (China); 2012; 24(5):875-81. PubMed ID: 22893965 [TBL] [Abstract][Full Text] [Related]
16. Reaction behavior of SO2 in the sintering process with flue gas recirculation. Yu ZY; Fan XH; Gan M; Chen XL; Chen Q; Huang YS J Air Waste Manag Assoc; 2016 Jul; 66(7):687-97. PubMed ID: 27043363 [TBL] [Abstract][Full Text] [Related]
17. The ignored emission of volatile organic compounds from iron ore sinter process. Li J; He X; Pei B; Li X; Ying D; Wang Y; Jia J J Environ Sci (China); 2019 Mar; 77():282-290. PubMed ID: 30573092 [TBL] [Abstract][Full Text] [Related]
18. Determining optimal operation parameters for reducing PCDD/F emissions (I-TEQ values) from the iron ore sintering process by using the Taguchi experimental design. Chen YC; Tsai PJ; Mou JL Environ Sci Technol; 2008 Jul; 42(14):5298-303. PubMed ID: 18754384 [TBL] [Abstract][Full Text] [Related]
19. PCDD/F and "Dioxin-like" PCB emissions from iron ore sintering plants in the UK. Aries E; Anderson DR; Fisher R; Fray TA; Hemfrey D Chemosphere; 2006 Nov; 65(9):1470-80. PubMed ID: 16765418 [TBL] [Abstract][Full Text] [Related]
20. [Study on inhibition of NO(x) and dioxin emissions by carbohydrazide under moderate to high temperatures]. Guan ZZ; Chen DZ; Hong X; Li XW; Yu YM; Wang YJ Huan Jing Ke Xue; 2011 Sep; 32(9):2810-6. PubMed ID: 22165256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]