These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37123255)

  • 1. A novel model for hemolysis estimation in rotating impeller blood pumps considering red blood cell aging.
    Wang L; Yun Z; Yao J; Tang X; Feng Y; Xiang C
    Front Physiol; 2023; 14():1174188. PubMed ID: 37123255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Human Erythrocyte's Threshold Free Energy for Hemolysis and Damage from Coupling Effect of Shear and Impact Based on Immersed Boundary-Lattice Boltzmann Method.
    Yun Z; Xiang C; Wang L
    Appl Bionics Biomech; 2020; 2020():8874247. PubMed ID: 33204305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Impeller Speed Adjustment Interval on Hemolysis Performance of an Intravascular Micro-Axial Blood Pump.
    Liu Y; Zhu Y; Wang S; Fu H; Lu Z; Yang M
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pulsatile rotary pumps with low hemolysis].
    Qian K; Zeng P; Ru W; Yuan H; Feng Z; Li L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):391-3. PubMed ID: 11605497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump.
    Yang W; Peng S; Xiao W; Hu Y; Wu H; Li M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].
    Shou C; Guo Y; Su L; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1260-4. PubMed ID: 25868241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemolysis performance analysis and a novel estimation model of roller pump system.
    Gao Y; Li M; Jiang M; Zhang Y; Wu C; Ji X
    Comput Biol Med; 2023 Jun; 159():106842. PubMed ID: 37062254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.
    Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to produce a pulsatile flow with low haemolysis?
    Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li I
    J Med Eng Technol; 2000; 24(5):227-9. PubMed ID: 11204246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump.
    Kim NJ; Diao C; Ahn KH; Lee SJ; Kameneva MV; Antaki JF
    Artif Organs; 2009 Jun; 33(6):468-74. PubMed ID: 19473143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart.
    Qian KX
    Med Eng Phys; 1996 Jan; 18(1):57-66. PubMed ID: 8771040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale modeling of hemolysis during microfiltration.
    Nikfar M; Razizadeh M; Paul R; Liu Y
    Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid dynamic characteristics of monopivot magnetic suspension blood pumps.
    Yamane T; Nishida M; Asztalos B; Tsutsui T; Jikuya T
    ASAIO J; 1997; 43(5):M635-8. PubMed ID: 9360122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis.
    Yano T; Sekine K; Mitoh A; Mitamura Y; Okamoto E; Kim DW; Nishimura I; Murabayashi S; Yozu R
    Artif Organs; 2003 Oct; 27(10):920-5. PubMed ID: 14616536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience in reducing the hemolysis of an impeller assist heart.
    Qian KX
    ASAIO Trans; 1989; 35(1):46-53. PubMed ID: 2730808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.