These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37123255)

  • 41. Hemolysis in different centrifugal pumps.
    Kawahito K; Nosé Y
    Artif Organs; 1997 Apr; 21(4):323-6. PubMed ID: 9096806
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.
    Horobin JT; Sabapathy S; Simmonds MJ
    Artif Organs; 2017 Nov; 41(11):1017-1025. PubMed ID: 28543744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The design and evaluation of the outflow structures of an interventional microaxial blood pump.
    Yun Z; Yao J; Wang L; Tang X; Feng Y
    Front Physiol; 2023; 14():1169905. PubMed ID: 37250127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Hemolysis test of the five kinds of impeller blood pumps in vitro].
    Li B; Lin C; Jiang Y; Wang J; Chen L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):479-82. PubMed ID: 12557528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hemolytic effect of the secondary vane incorporated into the back side of the impeller.
    Ohara Y; Murase M; Nosé Y
    Artif Organs; 1997 Jul; 21(7):694-9. PubMed ID: 9212941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices.
    Zhang T; Taskin ME; Fang HB; Pampori A; Jarvik R; Griffith BP; Wu ZJ
    Artif Organs; 2011 Dec; 35(12):1180-6. PubMed ID: 21810113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heuristic optimization of impeller sidewall gaps-based on the bees algorithm for a centrifugal blood pump by CFD.
    Onder A; Incebay O; Sen MA; Yapici R; Kalyoncu M
    Int J Artif Organs; 2021 Oct; 44(10):765-772. PubMed ID: 34128420
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Red Blood Cell Model to Estimate the Hemolysis Fingerprint of Cardiovascular Devices.
    Toninato R; Fadda G; Susin FM
    Artif Organs; 2018 Jan; 42(1):58-67. PubMed ID: 28722138
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of a monopivot centrifugal blood pump manufactured by 3D printing.
    Nishida M; Negishi T; Sakota D; Kosaka R; Maruyama O; Hyakutake T; Kuwana K; Yamane T
    J Artif Organs; 2016 Dec; 19(4):322-329. PubMed ID: 27370698
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measurements of gap pressure and wall shear stress of a blood pump model.
    Chua LP; Akamatsu T
    Med Eng Phys; 2000 Apr; 22(3):175-88. PubMed ID: 10964038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Cellular Model of Shear-Induced Hemolysis.
    Sohrabi S; Liu Y
    Artif Organs; 2017 Sep; 41(9):E80-E91. PubMed ID: 28044355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hemodynamic investigation and in vitro evaluation of a novel mixed-flow blood pump.
    Qu Y; Guo Z; Zhang J; Li G; Zhang S; Li D
    Artif Organs; 2022 Aug; 46(8):1533-1543. PubMed ID: 35167128
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.
    Yu H; Engel S; Janiga G; Thévenin D
    Artif Organs; 2017 Jul; 41(7):603-621. PubMed ID: 28643335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).
    Kido K; Hoshi H; Watanabe N; Kataoka H; Ohuchi K; Asama J; Shinshi T; Yoshikawa M; Takatani S
    Artif Organs; 2006 May; 30(5):392-9. PubMed ID: 16683958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of a Screw Centrifugal Blood Pump Based on Random Forest and Multi-Objective Gray Wolf Optimization Algorithm.
    Jing T; Sun H; Cheng J; Zhou L
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838106
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of flow field and hemolysis index in axial flow blood pump by computational fluid dynamics-discrete element method.
    Cheng L; Tan J; Yun Z; Wang S; Yu Z
    Int J Artif Organs; 2021 Jan; 44(1):46-54. PubMed ID: 32393086
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump.
    Avci M; Heck M; O'Rear EA; Papavassiliou DV
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1709-1722. PubMed ID: 34106362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of the Baylor/NASA axial flow ventricular assist device: in vitro performance and systematic hemolysis test results.
    Mizuguchi K; Damm GA; Bozeman RJ; Akkerman JW; Aber GS; Svejkovsky PA; Bacak JW; Orime Y; Takatani S; Nosé Y
    Artif Organs; 1994 Jan; 18(1):32-43. PubMed ID: 8141655
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flow visualization as a complementary tool to hemolysis testing in the development of centrifugal blood pumps.
    Yamane T; Asztalos B; Nishida M; Masuzawa T; Takiura K; Taenaka Y; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):375-80. PubMed ID: 9609344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.