These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37123255)

  • 61. Recent studies of the centrifugal blood pump with a magnetically suspended impeller.
    Akamatsu T; Tsukiya T; Nishimura K; Park CH; Nakazeki T
    Artif Organs; 1995 Jul; 19(7):631-4. PubMed ID: 8572964
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
    Mantegazza A; Tobin N; Manning KB; Craven BA
    Biomech Model Mechanobiol; 2023 Apr; 22(2):433-451. PubMed ID: 36418603
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Effect of impeller vane number and angles on pump hemolysis].
    Qian K; Feng Z; Zeng P; Ru W; Yuan H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):605-7. PubMed ID: 14716856
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices.
    Craven BA; Aycock KI; Herbertson LH; Malinauskas RA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Empirical and Computational Evaluation of Hemolysis in a Microfluidic Extracorporeal Membrane Oxygenator Prototype.
    Imtiaz N; Poskus MD; Stoddard WA; Gaborski TR; Day SW
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930760
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of blood viscosity on shear-induced hemolysis using a magnetically levitated shearing device.
    Krisher JA; Malinauskas RA; Day SW
    Artif Organs; 2022 Jun; 46(6):1027-1039. PubMed ID: 35030287
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glucose depletion enhances sensitivity to shear stress-induced mechanical damage in red blood cells by rotary blood pumps.
    Sakota D; Sakamoto R; Yokoyama N; Kobayashi M; Takatani S
    Artif Organs; 2009 Sep; 33(9):733-9. PubMed ID: 19775265
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimizing the design of axial flow pump blades based on fluid characteristics.
    Zhu L; Yu Q; Yu L; Wang L; Yang Y; Shen P; Fan Y
    Comput Methods Biomech Biomed Engin; 2024 Mar; ():1-10. PubMed ID: 38444287
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Numerical Analysis of Two-stage Axial Blood Pump Based on Blood Damage].
    Zhou B; Jing T; Wang F; He Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Aug; 33(4):686-90. PubMed ID: 29714907
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Study of Secondary Flow in Centrifugal Blood Pumps Using a Flow Visualization Method with a High-Speed Video Camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 May; 20(5):541-545. PubMed ID: 28868724
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cell-scale hemolysis evaluation of intervenient ventricular assist device based on dissipative particle dynamics.
    Xu Z; Chen C; Hao P; He F; Zhang X
    Front Physiol; 2023; 14():1181423. PubMed ID: 37476687
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
    Thamsen B; Mevert R; Lommel M; Preikschat P; Gaebler J; Krabatsch T; Kertzscher U; Hennig E; Affeld K
    Int J Artif Organs; 2016 Jun; 39(4):178-83. PubMed ID: 27034319
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 Jun; 20(6):541-5. PubMed ID: 8817952
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Suitable hemolysis index for low-flow rotary blood pumps.
    Yamane T; Adachi K; Kosaka R; Maruyama O; Nishida M
    J Artif Organs; 2021 Jun; 24(2):120-125. PubMed ID: 33136218
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A tensor-based measure for estimating blood damage.
    Arora D; Behr M; Pasquali M
    Artif Organs; 2004 Nov; 28(11):1002-15. PubMed ID: 15504116
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Leakage flow rate and wall shear stress distributions in a biocentrifugal ventricular assist device.
    Chua LP; Ong KS; Yu CM; Zhou T
    ASAIO J; 2004; 50(6):530-6. PubMed ID: 15672784
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Vienna implantable centrifugal blood pump.
    Schima H; Trubel W; Wieselthaler G; Schmidt C; Müller MR; Siegl H; Losert U; Wolner E
    Artif Organs; 1994 Jul; 18(7):500-5. PubMed ID: 7980093
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An energy-dissipation-based power-law formulation for estimating hemolysis.
    Wu P; Groß-Hardt S; Boehning F; Hsu PL
    Biomech Model Mechanobiol; 2020 Apr; 19(2):591-602. PubMed ID: 31612342
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Direct detection of red blood cell fragments: a new flow cytometric method to evaluate hemolysis in blood pumps.
    Linneweber J; Chow TW; Takano T; Maeda T; Nonaka K; Schulte-Eistrup S; Kawahito S; Elert O; Moake JL; Nosé Y
    ASAIO J; 2001; 47(5):533-6. PubMed ID: 11575832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.