These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37124108)

  • 1. Blood pressure estimation and its recalibration assessment using wrist cuff blood pressure monitor.
    Seo Y; Kwon S; Sunarya U; Park S; Park K; Jung D; Cho Y; Park C
    Biomed Eng Lett; 2023 May; 13(2):221-233. PubMed ID: 37124108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling Wearable Pulse Transit Time-Based Blood Pressure Estimation for Medically Underserved Areas and Health Equity: Comprehensive Evaluation Study.
    Ganti V; Carek AM; Jung H; Srivatsa AV; Cherry D; Johnson LN; Inan OT
    JMIR Mhealth Uhealth; 2021 Aug; 9(8):e27466. PubMed ID: 34338646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and reliability of wrist-cuff devices for self-measurement of blood pressure.
    Kikuya M; Chonan K; Imai Y; Goto E; Ishii M;
    J Hypertens; 2002 Apr; 20(4):629-38. PubMed ID: 11910297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Blood Pressure Monitoring using Wrist-worn Bio-impedance Sensors with Wet Electrodes.
    Ibrahim B; Jafari R
    IEEE Biomed Circuits Syst Conf; 2018 Oct; 2018():. PubMed ID: 31312808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Potential of Wearable Limb Ballistocardiogram in Blood Pressure Monitoring via Pulse Transit Time.
    Yousefian P; Shin S; Mousavi A; Kim CS; Mukkamala R; Jang DG; Ko BH; Lee J; Kwon UK; Kim YH; Hahn JO
    Sci Rep; 2019 Jul; 9(1):10666. PubMed ID: 31337783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of arm position and pulse pressure on the validation of a wrist-cuff blood pressure measurement device in a high risk population.
    Khoshdel AR; Carney S; Gillies A
    Int J Gen Med; 2010 Apr; 3():119-25. PubMed ID: 20463830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model.
    Raju SMTU; Dipto SA; Hossain MI; Chowdhury MAS; Haque F; Nashrah AT; Nishan A; Khan MMH; Hashem MMA
    Med Biol Eng Comput; 2024 Jul; ():. PubMed ID: 38963467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cuff width alters the amplitude envelope of wrist cuff pressure pulse waveforms.
    Jilek J; Stork M
    Physiol Meas; 2010 Jul; 31(7):N43-9. PubMed ID: 20505218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a wearable cuff-less wristwatch-type blood pressure monitoring device.
    Moon JH; Kang MK; Choi CE; Min J; Lee HY; Lim S
    Sci Rep; 2020 Nov; 10(1):19015. PubMed ID: 33149118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography.
    Huynh TH; Jafari R; Chung WY
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):967-976. PubMed ID: 30130167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal Wrist Biosensor for Wearable Cuff-less Blood Pressure Monitoring System.
    Rachim VP; Chung WY
    Sci Rep; 2019 May; 9(1):7947. PubMed ID: 31138845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a home nocturnal blood pressure monitoring system using a wrist-cuff device.
    Imai Y; Asayama K; Fujiwara S; Saito K; Sato H; Haga T; Satoh M; Murakami T; Metoki H; Kikuya M; Obara T; Inoue R; Ohkubo T
    Blood Press Monit; 2018 Dec; 23(6):318-326. PubMed ID: 30418253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel blood pressure estimation method using single photoplethysmography feature.
    Yang Chen ; Shuo Cheng ; Tong Wang ; Ting Ma
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1712-1715. PubMed ID: 29060216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept.
    Ibrahim B; Jafari R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1723-1735. PubMed ID: 31603828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper-Arm Photoplethysmographic Sensor with One-Time Calibration for Long-Term Blood Pressure Monitoring.
    Wang CF; Wang TY; Kuo PH; Wang HL; Li SZ; Lin CM; Chan SC; Liu TY; Lo YC; Lin SH; Chen YY
    Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multi-Parameter Fusion Method for Cuffless Continuous Blood Pressure Estimation Based on Electrocardiogram and Photoplethysmogram.
    Ma G; Zhang J; Liu J; Wang L; Yu Y
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.