These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3712437)

  • 21. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function.
    Saarma U; Remme J; Ehrenberg M; Bilgin N
    J Mol Biol; 1997 Sep; 272(3):327-35. PubMed ID: 9325093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monoclonal antibodies to epitopes in both C-terminal and N-terminal domains of Escherichia coli ribosomal protein L7/L12 inhibit elongation factor binding but not peptidyl transferase activity.
    Nag B; Tewari DS; Traut RR
    Biochemistry; 1987 Jan; 26(2):461-5. PubMed ID: 2435318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.
    Tubulekas I; Hughes D
    J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA.
    Jonák J; Pokorná K; Meloun B; Karas K
    Eur J Biochem; 1986 Jan; 154(2):355-62. PubMed ID: 3510872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Centers of motion associated with EF-Tu binding to the ribosome.
    Paci M; Fox GE
    RNA Biol; 2016 May; 13(5):524-30. PubMed ID: 26786136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function.
    Cristodero M; Mani J; Oeljeklaus S; Aeberhard L; Hashimi H; Ramrath DJ; Lukeš J; Warscheid B; Schneider A
    Mol Microbiol; 2013 Nov; 90(4):744-55. PubMed ID: 24033548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A
    EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome.
    Kavaliauskas D; Chen C; Liu W; Cooperman BS; Goldman YE; Knudsen CR
    Nucleic Acids Res; 2018 Sep; 46(16):8651-8661. PubMed ID: 30107527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome.
    Daviter T; Wieden HJ; Rodnina MV
    J Mol Biol; 2003 Sep; 332(3):689-99. PubMed ID: 12963376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elongation factors on the ribosome.
    Nilsson J; Nissen P
    Curr Opin Struct Biol; 2005 Jun; 15(3):349-54. PubMed ID: 15922593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding.
    García-Ortega L; Alvarez-García E; Gavilanes JG; Martínez-del-Pozo A; Joseph S
    Nucleic Acids Res; 2010 Jul; 38(12):4108-19. PubMed ID: 20215430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G.
    Richman N; Bodley JW
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):686-9. PubMed ID: 4551984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein biosynthesis: structural studies of the elongation cycle.
    Nyborg J; Liljas A
    FEBS Lett; 1998 Jun; 430(1-2):95-9. PubMed ID: 9678602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of proteins located in the neighbourhood of the binding site for elongation factor EF-Tu on Escherichia coli ribosomes.
    Fabian U
    FEBS Lett; 1976 Dec; 71(2):256-60. PubMed ID: 793860
    [No Abstract]   [Full Text] [Related]  

  • 39. Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain.
    Jensen M; Cool RH; Mortensen KK; Clark BF; Parmeggiani A
    Eur J Biochem; 1989 Jun; 182(2):247-55. PubMed ID: 2661226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA.
    Powers T; Noller HF
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1364-8. PubMed ID: 8433994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.