BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3712452)

  • 21. Decreased Ca2+-binding and Ca2+-ATPase activities in heart sarcolemma upon phospholipid methylation.
    Panagia V; Elimban V; Ganguly PK; Dhalla NS
    Mol Cell Biochem; 1987 Nov; 78(1):65-71. PubMed ID: 2842656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen-induced enzyme release after irreversible myocardial injury. Effects of cyanide in perfused rat hearts.
    Ganote CE; Worstell J; Kaltenbach JP
    Am J Pathol; 1976 Aug; 84(2):327-50. PubMed ID: 941982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytosolic [Ca2+], [Na+], and pH in guinea pig ventricular myocytes exposed to anoxia and reoxygenation.
    Ralenkotter L; Dales C; Delcamp TJ; Hadley RW
    Am J Physiol; 1997 Jun; 272(6 Pt 2):H2679-85. PubMed ID: 9227546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of ONO-3144, a new cardioplegic agent, in the reoxygenation injury in the anoxic myocardium.
    Kobayashi H; Ashraf M; Rahamathulia M; Kobayashi K; Schwartz A
    Jpn Circ J; 1987 Apr; 51(4):421-30. PubMed ID: 3613043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload.
    Nakanishi H; Makino N; Hata T; Matsui H; Yano K; Yanaga T
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H349-56. PubMed ID: 2548404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heart sarcolemmal ATPase and calcium binding activities in rats fed a high cholesterol diet.
    Moffat MP; Dhalla NS
    Can J Cardiol; 1985; 1(3):194-200. PubMed ID: 2996727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes.
    Bond JM; Chacon E; Herman B; Lemasters JJ
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C129-37. PubMed ID: 8338121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alterations in heart membrane calcium transport during the development of ischemia-reperfusion injury.
    Dhalla NS; Panagia V; Singal PK; Makino N; Dixon IM; Eyolfson DA
    J Mol Cell Cardiol; 1988 Mar; 20 Suppl 2():3-13. PubMed ID: 2842510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of sarcolemmal cholesterol content on the tolerance to anoxia in cardiomyocyte cultures.
    Bastiaanse EM; van der Valk-Kokshoorn LJ; Egas-Kenniphaas JM; Atsma DE; van der Laarse A
    J Mol Cell Cardiol; 1994 May; 26(5):639-48. PubMed ID: 8072018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Na+ accumulation increases Ca2+ overload and impairs function in anoxic rat heart.
    Tani M; Neely JR
    J Mol Cell Cardiol; 1990 Jan; 22(1):57-72. PubMed ID: 2157854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of isolated rat heart cells to hypoxia, re-oxygenation, and acidosis.
    Altschuld RA; Hostetler JR; Brierley GP
    Circ Res; 1981 Aug; 49(2):307-16. PubMed ID: 7249268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective turnover of sarcolemmal phospholipids with lethal cardiac myocyte injury.
    Miyazaki Y; Gross RW; Sobel BE; Saffitz JE
    Am J Physiol; 1990 Aug; 259(2 Pt 1):C325-31. PubMed ID: 2382705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial function and intracellular calcium in anoxic cardiac myocytes.
    Cheung JY; Leaf A; Bonventre JV
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C18-25. PubMed ID: 2417494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Possible mechanism responsible for mechanical dysfunction of ischemic myocardium: a role of oxygen free radicals.
    Okabe E; Fujimaki R; Murayama M; Ito H
    Jpn Circ J; 1989 Sep; 53(9):1132-7. PubMed ID: 2557460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alterations in cardiac membrane Ca2+ transport during oxidative stress.
    Dixon IM; Kaneko M; Hata T; Panagia V; Dhalla NS
    Mol Cell Biochem; 1990 Dec; 99(2):125-33. PubMed ID: 1962845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of extracellular calcium removal and anoxia on isolated rat myocytes.
    Cheung JY; Thompson IG; Bonventre JV
    Am J Physiol; 1982 Sep; 243(3):C184-90. PubMed ID: 7114249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of sodium for recovery of calcium control in reoxygenated cardiomyocytes.
    Siegmund B; Ladilov YV; Piper HM
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H506-13. PubMed ID: 8067403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased sarcolemmal Ca2+ transport activity in skeletal muscle of diabetic rats.
    Taira Y; Hata T; Ganguly PK; Elimban V; Dhalla NS
    Am J Physiol; 1991 Apr; 260(4 Pt 1):E626-32. PubMed ID: 1850203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of anoxic-reoxygenated cardiomyocytes from severe Ca2+ overload.
    Siegmund B; Zude R; Piper HM
    Am J Physiol; 1992 Oct; 263(4 Pt 2):H1262-9. PubMed ID: 1384362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium-mediated damage during post-ischaemic reperfusion.
    Nayler WG; Panagiotopoulos S; Elz JS; Daly MJ
    J Mol Cell Cardiol; 1988 Mar; 20 Suppl 2():41-54. PubMed ID: 3411616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.