These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37125164)
1. Differential responses in some quinoa genotypes of a consortium of beneficial endophytic bacteria against bacterial leaf spot disease. Badran A; Eid NA; Hassan AR; Mahmoudi H Front Microbiol; 2023; 14():1167250. PubMed ID: 37125164 [TBL] [Abstract][Full Text] [Related]
2. Screening, Identification, and Growth Promotion of Antagonistic Endophytes Associated with Xie T; Shen S; Hu R; Li W; Wang J Phytopathology; 2023 Oct; 113(10):1839-1852. PubMed ID: 37948615 [TBL] [Abstract][Full Text] [Related]
3. Effects of Nitrogen Accumulation, Transportation, and Grain Nutritional Quality and Advances in Fungal Endophyte Research in Quinoa ( Li L; Jiang Z; Yang X; Zhang Y; Huang J; Dai J; Noor H; Wu X; Ren A; Gao Z; Sun M J Fungi (Basel); 2024 Jul; 10(7):. PubMed ID: 39057389 [TBL] [Abstract][Full Text] [Related]
4. Plant-Growth Endophytic Bacteria Improve Nutrient Use Efficiency and Modulate Foliar N-Metabolites in Sugarcane Seedling. Cipriano MAP; Freitas-IĆ³rio RP; Dimitrov MR; de Andrade SAL; Kuramae EE; Silveira APDD Microorganisms; 2021 Feb; 9(3):. PubMed ID: 33669086 [TBL] [Abstract][Full Text] [Related]
5. Agro-Morphological, Yield and Quality Traits and Interrelationship with Yield Stability in Quinoa ( Hussain MI; Muscolo A; Ahmed M; Asghar MA; Al-Dakheel AJ Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33322139 [TBL] [Abstract][Full Text] [Related]
6. Yang A; Akhtar SS; Fu Q; Naveed M; Iqbal S; Roitsch T; Jacobsen SE Plants (Basel); 2020 May; 9(6):. PubMed ID: 32466435 [TBL] [Abstract][Full Text] [Related]
7. Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Hussain MI; Al-Dakheel AJ; Reigosa MJ Plant Physiol Biochem; 2018 Aug; 129():411-420. PubMed ID: 30691637 [TBL] [Abstract][Full Text] [Related]
8. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Yang A; Akhtar SS; Iqbal S; Amjad M; Naveed M; Zahir ZA; Jacobsen SE Funct Plant Biol; 2016 Jul; 43(7):632-642. PubMed ID: 32480492 [TBL] [Abstract][Full Text] [Related]
9. Improved salt tolerance of Cai D; Xu Y; Zhao F; Zhang Y; Duan H; Guo X PeerJ; 2021; 9():e10702. PubMed ID: 33520465 [TBL] [Abstract][Full Text] [Related]
10. Enriching Urea with Nitrogen Inhibitors Improves Growth, N Uptake and Seed Yield in Quinoa ( Rehman HU; Alharby HF; Al-Zahrani HS; Bamagoos AA; Alsulami NB; Alabdallah NM; Iqbal T; Wakeel A Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161352 [TBL] [Abstract][Full Text] [Related]
11. Potential of mineral-solubilizing bacteria for physiology and growth promotion of Rafique E; Mumtaz MZ; Ullah I; Rehman A; Qureshi KA; Kamran M; Rehman MU; Jaremko M; Alenezi MA Front Plant Sci; 2022; 13():1004833. PubMed ID: 36299778 [TBL] [Abstract][Full Text] [Related]
12. First Report of Passalora Leaf Spot of Quinoa Caused by Passalora dubia in the United States. Testen AL; McKemy JM; Backman PA Plant Dis; 2013 Jan; 97(1):139. PubMed ID: 30722268 [TBL] [Abstract][Full Text] [Related]
13. Differential response of quinoa genotypes to drought and foliage-applied H Iqbal H; Yaning C; Waqas M; Shareef M; Raza ST Ecotoxicol Environ Saf; 2018 Nov; 164():344-354. PubMed ID: 30130733 [TBL] [Abstract][Full Text] [Related]
14. Preliminary Studies of the Performance of Quinoa (C Maliro MF; Guwela VF; Nyaika J; Murphy KM Front Plant Sci; 2017; 8():227. PubMed ID: 28289421 [TBL] [Abstract][Full Text] [Related]
15. First Report of Ascochyta Leaf Spot of Quinoa Caused by Ascochyta sp. in the United States. Testen AL; McKemy JM; Backman PA Plant Dis; 2013 Jun; 97(6):844. PubMed ID: 30722612 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii. Ray S; Singh V; Singh S; Sarma BK; Singh HB Plant Physiol Biochem; 2016 Dec; 109():430-441. PubMed ID: 27816824 [TBL] [Abstract][Full Text] [Related]
17. Yield, growth development and grain characteristics of seven Quinoa (Chenopodium quinoa Willd.) genotypes grown in open-field production systems under hot-arid climatic conditions. Oustani M; Mehda S; Halilat MT; Chenchouni H Sci Rep; 2023 Feb; 13(1):1991. PubMed ID: 36737632 [TBL] [Abstract][Full Text] [Related]
18. Root Reinforcement Improved Performance, Productivity, and Grain Bioactive Quality of Field-Droughted Quinoa ( Toubali S; Ait-El-Mokhtar M; Boutasknit A; Anli M; Ait-Rahou Y; Benaffari W; Ben-Ahmed H; Mitsui T; Baslam M; Meddich A Front Plant Sci; 2022; 13():860484. PubMed ID: 35371170 [TBL] [Abstract][Full Text] [Related]
19. A Plant-Fungus Bioassay Supports the Classification of Quinoa (Chenopodium quinoa Willd.) as Inconsistently Mycorrhizal. Kellogg JA; Reganold JP; Murphy KM; Carpenter-Boggs LA Microb Ecol; 2021 Jul; 82(1):135-144. PubMed ID: 33580815 [TBL] [Abstract][Full Text] [Related]
20. The Endophytic Root Microbiome Is Different in Healthy and Ralstonia solanacearum-Infected Plants and Is Regulated by a Consortium Containing Beneficial Endophytic Bacteria. Li Y; Qi G; Xie Z; Li B; Wang R; Tan J; Shi H; Xiang B; Zhao X Microbiol Spectr; 2023 Feb; 11(1):e0203122. PubMed ID: 36515552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]