These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37125440)

  • 1. Colloidal CdSe/CdS Core/Crown Nanoplatelets for Efficient Blue Light Emission and Optical Amplification.
    Rodà C; Di Giacomo A; Tasende Rodríguez LC; M CS; Leemans J; Hens Z; Geiregat P; Moreels I
    Nano Lett; 2023 Apr; 23(8):3224-3230. PubMed ID: 37125440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplified spontaneous emission and lasing in colloidal nanoplatelets.
    Guzelturk B; Kelestemur Y; Olutas M; Delikanli S; Demir HV
    ACS Nano; 2014 Jul; 8(7):6599-605. PubMed ID: 24882737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Core/Crown Growth Enables Blue-Emitting Colloidal Nanoplatelets with Efficient and Pure Photoluminescence.
    Hu A; Bai P; Zhu Y; Tang Z; Xiao L; Gao Y
    Small; 2022 Nov; 18(44):e2204120. PubMed ID: 36135780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-Threshold Optical Gain in Electrochemically Doped Nanoplatelets and the Physics Behind It.
    Geuchies JJ; Dijkhuizen R; Koel M; Grimaldi G; du Fossé I; Evers WH; Hens Z; Houtepen AJ
    ACS Nano; 2022 Nov; 16(11):18777-18788. PubMed ID: 36256901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Rational Design of Core/(Multi)-Crown Type-II Heteronanoplatelets.
    Delikanli S; Canimkurbey B; Hernández-Martínez PL; Shabani F; Isik AT; Ozkan I; Bozkaya I; Bozkaya T; Isik F; Durmusoglu EG; Izmir M; Akgun H; Demir HV
    J Am Chem Soc; 2023 Jun; 145(22):12033-12043. PubMed ID: 37159876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets.
    Ma X; Diroll BT; Cho W; Fedin I; Schaller RD; Talapin DV; Gray SK; Wiederrecht GP; Gosztola DJ
    ACS Nano; 2017 Sep; 11(9):9119-9127. PubMed ID: 28787569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral surface passivation of CdSe nanoplatelets through crown management.
    Liu H; Chen P; Zhang X; Wang X; He T; Chen R
    Nanoscale; 2023 Sep; 15(34):14140-14145. PubMed ID: 37584662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence.
    Kelestemur Y; Shynkarenko Y; Anni M; Yakunin S; De Giorgi ML; Kovalenko MV
    ACS Nano; 2019 Dec; 13(12):13899-13909. PubMed ID: 31769648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High External Quantum Efficiency Light-Emitting Diodes Enabled by Advanced Heterostructures of Type-II Nanoplatelets.
    Durmusoglu EG; Hu S; Hernandez-Martinez PL; Izmir M; Shabani F; Guo M; Gao H; Isik F; Delikanli S; Sharma VK; Liu B; Demir HV
    ACS Nano; 2023 Apr; 17(8):7636-7644. PubMed ID: 36912794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Threshold Room Temperature Amplified Spontaneous Emission in 0D, 1D and 2D Quantum Confined Systems.
    Chhantyal P; Naskar S; Birr T; Fischer T; Lübkemann F; Chichkov BN; Dorfs D; Bigall NC; Reinhardt C
    Sci Rep; 2018 Mar; 8(1):3962. PubMed ID: 29500408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets.
    Antolinez FV; Rabouw FT; Rossinelli AA; Cui J; Norris DJ
    Nano Lett; 2019 Dec; 19(12):8495-8502. PubMed ID: 31686517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd
    Shendre S; Delikanli S; Li M; Dede D; Pan Z; Ha ST; Fu YH; Hernández-Martínez PL; Yu J; Erdem O; Kuznetsov AI; Dang C; Sum TC; Demir HV
    Nanoscale; 2018 Dec; 11(1):301-310. PubMed ID: 30534689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for optical gain in colloidal nanoplatelets.
    Li Q; Lian T
    Chem Sci; 2018 Jan; 9(3):728-734. PubMed ID: 29629142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing Ag Dopants into CdSe Nanoplatelets (NPLs) Leads to Effective Charge Separation for Better Photodetector Performance.
    Ghosh S; Medda A; Patra A
    Chem Asian J; 2024 May; ():e202400528. PubMed ID: 38775420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth.
    Altintas Y; Quliyeva U; Gungor K; Erdem O; Kelestemur Y; Mutlugun E; Kovalenko MV; Demir HV
    Small; 2019 Feb; 15(8):e1804854. PubMed ID: 30701687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-Picosecond Auger-Mediated Hole-Trapping Dynamics in Colloidal CdSe/CdS Core/Shell Nanoplatelets.
    Dong S; Pal S; Lian J; Chan Y; Prezhdo OV; Loh ZH
    ACS Nano; 2016 Oct; 10(10):9370-9378. PubMed ID: 27640430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low Threshold Multiexciton Optical Gain in Colloidal CdSe/CdTe Core/Crown Type-II Nanoplatelet Heterostructures.
    Li Q; Xu Z; McBride JR; Lian T
    ACS Nano; 2017 Mar; 11(3):2545-2553. PubMed ID: 28157330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets.
    Olutas M; Guzelturk B; Kelestemur Y; Yeltik A; Delikanli S; Demir HV
    ACS Nano; 2015 May; 9(5):5041-50. PubMed ID: 25950419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Area- and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the "Universal Volume Scaling Law".
    Li Q; Lian T
    Nano Lett; 2017 May; 17(5):3152-3158. PubMed ID: 28418671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.