These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. PERfect Day: reversible and dose-dependent control of circadian time-keeping in the mouse suprachiasmatic nucleus by translational switching of PERIOD2 protein expression. McManus D; Patton AP; Smyllie NJ; Chin JW; Hastings MH Eur J Neurosci; 2024 Oct; 60(7):5537-5552. PubMed ID: 39300693 [TBL] [Abstract][Full Text] [Related]
6. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Patton AP; Morris EL; McManus D; Wang H; Li Y; Chin JW; Hastings MH Proc Natl Acad Sci U S A; 2023 May; 120(21):e2301330120. PubMed ID: 37186824 [TBL] [Abstract][Full Text] [Related]
7. Neuron-Astrocyte Interactions and Circadian Timekeeping in Mammals. Smyllie NJ; Hastings MH; Patton AP Neuroscientist; 2024 Apr; ():10738584241245307. PubMed ID: 38602223 [TBL] [Abstract][Full Text] [Related]
8. Cryptochrome 1 as a state variable of the circadian clockwork of the suprachiasmatic nucleus: Evidence from translational switching. McManus D; Polidarova L; Smyllie NJ; Patton AP; Chesham JE; Maywood ES; Chin JW; Hastings MH Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2203563119. PubMed ID: 35976881 [TBL] [Abstract][Full Text] [Related]
9. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624 [TBL] [Abstract][Full Text] [Related]
10. Circadian rhythms have broad implications for understanding brain and behavior. Silver R; Kriegsfeld LJ Eur J Neurosci; 2014 Jun; 39(11):1866-80. PubMed ID: 24799154 [TBL] [Abstract][Full Text] [Related]
11. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus. Patton AP; Chesham JE; Hastings MH J Neurosci; 2016 Sep; 36(36):9326-41. PubMed ID: 27605609 [TBL] [Abstract][Full Text] [Related]
12. Resetting mechanism of central and peripheral circadian clocks in mammals. Hirota T; Fukada Y Zoolog Sci; 2004 Apr; 21(4):359-68. PubMed ID: 15118222 [TBL] [Abstract][Full Text] [Related]
13. The Concept of Coupling in the Mammalian Circadian Clock Network. Pilorz V; Astiz M; Heinen KO; Rawashdeh O; Oster H J Mol Biol; 2020 May; 432(12):3618-3638. PubMed ID: 31926953 [TBL] [Abstract][Full Text] [Related]
14. Mammalian molecular clocks. Kwon I; Choe HK; Son GH; Kim K Exp Neurobiol; 2011 Mar; 20(1):18-28. PubMed ID: 22110358 [TBL] [Abstract][Full Text] [Related]
15. Entrainment of circadian clocks in mammals by arousal and food. Mistlberger RE; Antle MC Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388 [TBL] [Abstract][Full Text] [Related]
16. Neural circuits in the central circadian clock and their regulation of sleep and wakefulness in mammals. Ono D Neurosci Res; 2022 Sep; 182():1-6. PubMed ID: 35597406 [TBL] [Abstract][Full Text] [Related]
17. The Tau mutation of casein kinase 1ε sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins. Maywood ES; Chesham JE; Smyllie NJ; Hastings MH J Biol Rhythms; 2014 Apr; 29(2):110-8. PubMed ID: 24682205 [TBL] [Abstract][Full Text] [Related]
18. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. Asai M; Yoshinobu Y; Kaneko S; Mori A; Nikaido T; Moriya T; Akiyama M; Shibata S J Neurosci Res; 2001 Dec; 66(6):1133-9. PubMed ID: 11746446 [TBL] [Abstract][Full Text] [Related]