BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 37125558)

  • 1. The Mammalian Circadian Time-Keeping System.
    Patton AP; Hastings MH
    J Huntingtons Dis; 2023; 12(2):91-104. PubMed ID: 37125558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock.
    Hastings MH; Smyllie NJ; Patton AP
    J Mol Biol; 2020 May; 432(12):3639-3660. PubMed ID: 31996314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cell-Autonomous Clock of VIP Receptor VPAC2 Cells Regulates Period and Coherence of Circadian Behavior.
    Hamnett R; Chesham JE; Maywood ES; Hastings MH
    J Neurosci; 2021 Jan; 41(3):502-512. PubMed ID: 33234609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops.
    O'Neill JS; Maywood ES; Hastings MH
    Handb Exp Pharmacol; 2013; (217):67-103. PubMed ID: 23604476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus.
    Patton AP; Morris EL; McManus D; Wang H; Li Y; Chin JW; Hastings MH
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2301330120. PubMed ID: 37186824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptochrome 1 as a state variable of the circadian clockwork of the suprachiasmatic nucleus: Evidence from translational switching.
    McManus D; Polidarova L; Smyllie NJ; Patton AP; Chesham JE; Maywood ES; Chin JW; Hastings MH
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2203563119. PubMed ID: 35976881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling.
    Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythms have broad implications for understanding brain and behavior.
    Silver R; Kriegsfeld LJ
    Eur J Neurosci; 2014 Jun; 39(11):1866-80. PubMed ID: 24799154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus.
    Patton AP; Chesham JE; Hastings MH
    J Neurosci; 2016 Sep; 36(36):9326-41. PubMed ID: 27605609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resetting mechanism of central and peripheral circadian clocks in mammals.
    Hirota T; Fukada Y
    Zoolog Sci; 2004 Apr; 21(4):359-68. PubMed ID: 15118222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Concept of Coupling in the Mammalian Circadian Clock Network.
    Pilorz V; Astiz M; Heinen KO; Rawashdeh O; Oster H
    J Mol Biol; 2020 May; 432(12):3618-3638. PubMed ID: 31926953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian molecular clocks.
    Kwon I; Choe HK; Son GH; Kim K
    Exp Neurobiol; 2011 Mar; 20(1):18-28. PubMed ID: 22110358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entrainment of circadian clocks in mammals by arousal and food.
    Mistlberger RE; Antle MC
    Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural circuits in the central circadian clock and their regulation of sleep and wakefulness in mammals.
    Ono D
    Neurosci Res; 2022 Sep; 182():1-6. PubMed ID: 35597406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Tau mutation of casein kinase 1ε sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins.
    Maywood ES; Chesham JE; Smyllie NJ; Hastings MH
    J Biol Rhythms; 2014 Apr; 29(2):110-8. PubMed ID: 24682205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats.
    Asai M; Yoshinobu Y; Kaneko S; Mori A; Nikaido T; Moriya T; Akiyama M; Shibata S
    J Neurosci Res; 2001 Dec; 66(6):1133-9. PubMed ID: 11746446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators.
    Ruan GX; Gamble KL; Risner ML; Young LA; McMahon DG
    PLoS One; 2012; 7(6):e38985. PubMed ID: 22701739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
    Wegner S; Belle MDC; Hughes ATL; Diekman CO; Piggins HD
    J Neurosci; 2017 Aug; 37(33):7824-7836. PubMed ID: 28698388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian clocks: regulators of endocrine and metabolic rhythms.
    Hastings M; O'Neill JS; Maywood ES
    J Endocrinol; 2007 Nov; 195(2):187-98. PubMed ID: 17951531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.