BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37125747)

  • 41. Modality-specific Changes in Motor Cortex Excitability After Visuo-proprioceptive Realignment.
    Munoz-Rubke F; Mirdamadi JL; Lynch AK; Block HJ
    J Cogn Neurosci; 2017 Dec; 29(12):2054-2067. PubMed ID: 28777059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correcting for natural visuo-proprioceptive matching errors based on reward as opposed to error feedback does not lead to higher retention.
    Kuling IA; de Brouwer AJ; Smeets JBJ; Flanagan JR
    Exp Brain Res; 2019 Mar; 237(3):735-741. PubMed ID: 30560507
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Different contributions of efferent and reafferent feedback to sensorimotor temporal recalibration.
    Arikan BE; van Kemenade BM; Fiehler K; Kircher T; Drewing K; Straube B
    Sci Rep; 2021 Nov; 11(1):22631. PubMed ID: 34799622
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Learned rather than online relative weighting of visual-proprioceptive sensory cues.
    Mikula L; Gaveau V; Pisella L; Khan AZ; Blohm G
    J Neurophysiol; 2018 May; 119(5):1981-1992. PubMed ID: 29465322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contributions of implicit and explicit memories to sensorimotor adaptation of movement extent during goal-directed reaching.
    Lantagne DD; Mrotek LA; Slick R; Beardsley SA; Thomas DG; Scheidt RA
    Exp Brain Res; 2021 Aug; 239(8):2445-2459. PubMed ID: 34106298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptation of reach action to a novel force-field is not predicted by acuity of dynamic proprioception in either older or younger adults.
    Kitchen NM; Miall RC
    Exp Brain Res; 2021 Feb; 239(2):557-574. PubMed ID: 33315127
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Short-term effects of visuomotor discrepancies on multisensory integration, proprioceptive recalibration, and motor adaptation.
    Debats NB; Heuer H; Kayser C
    J Neurophysiol; 2023 Feb; 129(2):465-478. PubMed ID: 36651909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for distinct, differentially adaptable sensorimotor transformations for reaches to visual and proprioceptive targets.
    Bernier PM; Gauthier GM; Blouin J
    J Neurophysiol; 2007 Sep; 98(3):1815-9. PubMed ID: 17634334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets.
    Blouin J; Saradjian AH; Lebar N; Guillaume A; Mouchnino L
    J Neurophysiol; 2014 Nov; 112(9):2290-301. PubMed ID: 25122716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The fast contribution of visual-proprioceptive discrepancy to reach aftereffects and proprioceptive recalibration.
    Ruttle JE; 't Hart BM; Henriques DYP
    PLoS One; 2018; 13(7):e0200621. PubMed ID: 30016356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visuo-Proprioceptive Control of the Hand in Older Adults.
    Block HJ; Sexton BM
    Multisens Res; 2020 Jul; 34(1):93-111. PubMed ID: 33706277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Late integration of vision and proprioception during perturbed reaches.
    Keyser J; Medendorp WP; Oostwoud Wijdenes L; Selen LPJ
    J Neurophysiol; 2023 Jun; 129(6):1282-1292. PubMed ID: 37073978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensory reweighting in targeted reaching: effects of conscious effort, error history, and target salience.
    Block HJ; Bastian AJ
    J Neurophysiol; 2010 Jan; 103(1):206-17. PubMed ID: 19846617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements.
    Kitchen NM; Miall RC
    Exp Brain Res; 2019 Feb; 237(2):531-545. PubMed ID: 30478636
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensorimotor adaptation in response to proprioceptive bias.
    Bernier PM; Chua R; Inglis JT; Franks IM
    Exp Brain Res; 2007 Feb; 177(2):147-56. PubMed ID: 16957884
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Memory for proprioceptive and multisensory targets is partially coded relative to gaze.
    Jones SA; Henriques DY
    Neuropsychologia; 2010 Nov; 48(13):3782-92. PubMed ID: 20934442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Continuous reports of sensed hand position during sensorimotor adaptation.
    Tsay JS; Parvin DE; Ivry RB
    J Neurophysiol; 2020 Oct; 124(4):1122-1130. PubMed ID: 32902347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Seeing Your Foot Move Changes Muscle Proprioceptive Feedback.
    Ackerley R; Chancel M; Aimonetti JM; Ribot-Ciscar E; Kavounoudias A
    eNeuro; 2019; 6(2):. PubMed ID: 30923738
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Somatotopic Specificity of Perceptual and Neurophysiological Changes Associated with Visuo-proprioceptive Realignment.
    Mirdamadi JL; Seigel CR; Husch SD; Block HJ
    Cereb Cortex; 2022 Mar; 32(6):1184-1199. PubMed ID: 34424950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.