These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37126112)

  • 1. Biodegradation of Phenol Using the Indigenous Rhodococcus pyridinivorans Strain PDB9T NS-1 Immobilized in Calcium Alginate Beads.
    Priyadarshini A; Mishra S; Sahoo NK; Raut S; Daverey A; Tripathy BC
    Appl Biochem Biotechnol; 2024 May; 196(5):2798-2818. PubMed ID: 37126112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors.
    Ruan B; Wu P; Chen M; Lai X; Chen L; Yu L; Gong B; Kang C; Dang Z; Shi Z; Liu Z
    Ecotoxicol Environ Saf; 2018 Oct; 162():103-111. PubMed ID: 29990721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic, isotherm modeling analyses of the adsorption of phenol on activated carbon/alginate composites.
    Gürkan EH; Akyol RB; Çoruh S
    Int J Phytoremediation; 2023; 25(7):832-839. PubMed ID: 36028953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenol biodegradation by immobilized Rhodococcus qingshengii isolated from coking effluent on Na-alginate and magnetic chitosan-alginate nanocomposite.
    Shahabivand S; Mortazavi SS; Mahdavinia GR; Darvishi F
    J Environ Manage; 2022 Apr; 307():114586. PubMed ID: 35085972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption of arsenic (III) from aqueous solution using calcium alginate immobilized dead biomass of Acinetobacter sp. strain Sp2b.
    Khandelwal R; Keelka S; Jain N; Jain P; Kumar Sharma M; Kaushik P
    Sci Rep; 2024 Apr; 14(1):9972. PubMed ID: 38693342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial behaviour in the biodegradation of phenol by indigenous bacteria immobilized in Ca-alginate beads.
    Namane A; Amrouche F; Arrar J; Ali O; Hellal A
    Environ Technol; 2020 Jun; 41(14):1829-1836. PubMed ID: 30526418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of the kinetics and equilibrium of phenol biosorption on immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solution.
    Farkas V; Felinger A; Hegedűsova A; Dékány I; Pernyeszi T
    Colloids Surf B Biointerfaces; 2013 Mar; 103():381-90. PubMed ID: 23247265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Biodegradation of Phenol and n-Hexadecane by Cryogel Immobilized Biosurfactant Producing Strain Rhodococcus wratislawiensis BN38.
    Hristov AE; Christova NE; Kabaivanova LV; Nacheva LV; Stoineva IB; Petrov PD
    Pol J Microbiol; 2016 Aug; 65(3):287-293. PubMed ID: 29334073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of p-chloro meta xylenol (PCMX) by bacterium-encapsulated calcium alginate beads in a novel plug flow process.
    Brahma B; Das M; Sarkar P; Sarkar U
    J Environ Manage; 2023 Jul; 337():117764. PubMed ID: 36989918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha.
    Dursun AY; Tepe O
    J Hazard Mater; 2005 Nov; 126(1-3):105-11. PubMed ID: 16051433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of halophilic yeast for effective removal of phenol in hypersaline conditions.
    Jiang Y; Yang K; Deng T; Ji B; Shang Y; Wang H
    Water Sci Technol; 2018 Feb; 77(3-4):706-713. PubMed ID: 29431715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronous degradation of phenol and aniline by
    Ma X; Zhou X; Wei S; Ke T; Wang P; Chen L
    Environ Technol; 2021 Dec; 42(28):4405-4414. PubMed ID: 32324107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of Cr (VI) with Trichoderma viride immobilized fungal biomass and cell free Ca-alginate beads.
    Bishnoi NR; Kumar R; Bishnoi K
    Indian J Exp Biol; 2007 Jul; 45(7):657-64. PubMed ID: 17821865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the effect of immobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions.
    Massalha N; Shaviv A; Sabbah I
    Water Res; 2010 Oct; 44(18):5252-9. PubMed ID: 20615523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan-calcium alginate blended beads.
    Nadavala SK; Swayampakula K; Boddu VM; Abburi K
    J Hazard Mater; 2009 Feb; 162(1):482-9. PubMed ID: 18573601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Batch-mode degradation of high-strength phenolic pollutants by Pseudomonas aeruginosa strain STV1713 immobilized on single and hybrid matrices.
    Sasi R; Vasu ST
    Biodegradation; 2024 Jul; 35(4):423-438. PubMed ID: 38310579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of immobilised Chlorophyta algae in form of calcium alginate beads for the removal of phenol: isotherm, kinetic and thermodynamic study.
    Alobaidi DS; Alwared AI
    Heliyon; 2023 Apr; 9(4):e14851. PubMed ID: 37025864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method.
    Lu D; Zhang Y; Niu S; Wang L; Lin S; Wang C; Ye W; Yan C
    Biodegradation; 2012 Apr; 23(2):209-19. PubMed ID: 21809019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.
    Ahmad A; Bhat AH; Buang A
    Environ Technol; 2019 Jun; 40(14):1793-1809. PubMed ID: 29345546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of Phenol by
    Wen Y; Li C; Song X; Yang Y
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32806514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.