These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37126260)

  • 1. Magnetically tunable diffractive optical elements based on ion-irradiated ultrathin ferromagnetic stacks.
    Huang X; Jiang S; Wu B; Huo R; Zhao X; Xing G; Long S; Gao N
    Opt Lett; 2023 May; 48(9):2305-2308. PubMed ID: 37126260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetically tunable optical diffraction gratings based on a ferromagnetic liquid crystal.
    Gao S; Fleisch M; Rupp RA; Cmok L; Medle-Rupnik P; Mertelj A; Lisjak D; Zhang X; Drevenšek-Olenik I
    Opt Express; 2019 Mar; 27(6):8900-8911. PubMed ID: 31052701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable focusing properties using optofluidic Fresnel zone plates.
    Shi Y; Zhu XQ; Liang L; Yang Y
    Lab Chip; 2016 Nov; 16(23):4554-4559. PubMed ID: 27785508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Diffractive Optical Elements Based on Shape-Memory Polymers Fabricated via Hot Embossing.
    Schauer S; Meier T; Reinhard M; Röhrig M; Schneider M; Heilig M; Kolew A; Worgull M; Hölscher H
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9423-30. PubMed ID: 26998646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetically Tunable Liquid Crystal-Based Optical Diffraction Gratings.
    Bošnjaković D; Sebastián N; Drevenšek-Olenik I
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33066481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear diffractive optical elements.
    Manela O; Segev M
    Opt Express; 2007 Aug; 15(17):10863-8. PubMed ID: 19547443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel-based diffractive optical elements (hDOEs) using rapid digital photopatterning.
    Xiong Z; Kunwar P; Soman P
    Adv Opt Mater; 2021 Jan; 9(2):. PubMed ID: 33692935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fresnel zone plate sculptured out of diamond by femtosecond laser for harsh environments.
    Wu P; Cao X; Chu W; Chen Z; Yuan H; Wang R; Yao S; Juodkazis S; Zhang W
    Opt Lett; 2023 Mar; 48(6):1379-1382. PubMed ID: 36946932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fresnel zone plate point spread function approximation for zeroth order mitigation in millimetric field of view x-ray imaging.
    Do A; Kozioziemski BJ
    Rev Sci Instrum; 2022 Oct; 93(10):103507. PubMed ID: 36319332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of low-spatial-frequency components by a new phase-contrast STEM using a probe formed with an amplitude Fresnel zone plate.
    Tomita M; Nagatani Y; Murata K; Momose A
    Ultramicroscopy; 2020 Nov; 218():113089. PubMed ID: 32896830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grating- and checkerboard-based zone plates as an optical array generator with a favorable beam shape.
    Sabatyan A; Rafighdoost J
    Appl Opt; 2017 Jul; 56(19):5355-5359. PubMed ID: 29047489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast optimization of Fresnel zone plate imaging.
    Haberberger D; Shvydky A; Nilson PM; Ivancic S; Froula DH
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37184346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetization reversal in Pt/Co(0.5 nm)/Pt nano-platelets patterned by focused ion beam lithography.
    Adam JP; Jamet JP; Ferré J; Mougin A; Rohart S; Weil R; Bourhis E; Gierak J
    Nanotechnology; 2010 Nov; 21(44):445302. PubMed ID: 20921591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of Fresnel Zone Plate Imaging Performance with Number of Zones.
    Li Y; de La Rochefoucauld O; Zeitoun P
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective Fresnel diffraction field extension of diffractive optical elements with plane wave incidence.
    Kong Z; Xu N; Xiao H; Tan Q
    Appl Opt; 2020 Apr; 59(11):3427-3431. PubMed ID: 32400457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Field.
    Yang H; Boulle O; Cros V; Fert A; Chshiev M
    Sci Rep; 2018 Aug; 8(1):12356. PubMed ID: 30120368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glued diffraction optical elements with broadband and a large field of view.
    Yang H; Xue C; Xiao J; Chen J
    Appl Opt; 2020 Nov; 59(33):10217-10223. PubMed ID: 33361949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffraction in a stratified region of a high numerical aperture Fresnel zone plate: a simple and rigorous integral representation.
    Zhang Y; Huang X; Zhang D; An H; Dai Y
    Opt Express; 2015 Mar; 23(6):8051-60. PubMed ID: 25837143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compact single channel interferometer to study vortex beam propagation through scattering layers.
    Lathika SJ; Anand V; Bhattacharya S
    Sci Rep; 2020 Jan; 10(1):296. PubMed ID: 31941939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of focus-tunable diffractive Moiré-lenses.
    Bernet S; Harm W; Ritsch-Marte M
    Opt Express; 2013 Mar; 21(6):6955-66. PubMed ID: 23546078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.