These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37126547)

  • 1. Magnetic guidewire steering at ultrahigh magnetic fields.
    Tiryaki ME; Elmacıoğlu YG; Sitti M
    Sci Adv; 2023 Apr; 9(17):eadg6438. PubMed ID: 37126547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network.
    Jeon S; Hoshiar AK; Kim K; Lee S; Kim E; Lee S; Kim JY; Nelson BJ; Cha HJ; Yi BJ; Choi H
    Soft Robot; 2019 Feb; 6(1):54-68. PubMed ID: 30312145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-Mitigated Design and Lorentz Force-Based Steering of an MRI-Driven Microcatheter toward Minimally Invasive Surgery.
    Phelan MF; Tiryaki ME; Lazovic J; Gilbert H; Sitti M
    Adv Sci (Weinh); 2022 Apr; 9(10):e2105352. PubMed ID: 35112810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kirchhoff rod-based three-dimensional dynamical model and real-time simulation for medical-magnetic guidewires.
    Wu Z; Zhang J; Wei S; Chen D
    Comput Methods Programs Biomed; 2023 Oct; 240():107646. PubMed ID: 37320941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless MRI-Powered Reversible Orientation-Locking Capsule Robot.
    Erin O; Boyvat M; Lazovic J; Tiryaki ME; Sitti M
    Adv Sci (Weinh); 2021 Jul; 8(13):2100463. PubMed ID: 35478933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. External Steering of Vine Robots via Magnetic Actuation.
    Kim NG; Greenidge NJ; Davy J; Park S; Chandler JH; Ryu JH; Valdastri P
    Soft Robot; 2024 Sep; ():. PubMed ID: 39288083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo demonstration of magnetic guidewire steerability in a MRI system with additional gradient coils.
    Lalande V; Gosselin FP; Vonthron M; Conan B; Tremblay C; Beaudoin G; Soulez G; Martel S
    Med Phys; 2015 Feb; 42(2):969-76. PubMed ID: 25652509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Electromagnetically Controllable Microrobotic Interventional System for Targeted, Real-Time Cardiovascular Intervention.
    Hwang J; Jeon S; Kim B; Kim JY; Jin C; Yeon A; Yi BJ; Yoon CH; Park HJ; Pané S; Nelson BJ; Choi H
    Adv Healthc Mater; 2022 Jun; 11(11):e2102529. PubMed ID: 35137568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Ultrahigh Field Magnetic Resonance Imaging in the Treatment of Brain Tumors: A Meta-Analysis.
    Barrett TF; Sarkiss CA; Dyvorne HA; Lee J; Balchandani P; Shrivastava RK
    World Neurosurg; 2016 Feb; 86():450-65. PubMed ID: 26409071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Guiding with Permanent Magnets: Concept, Realization and Applications to Nanoparticles and Cells.
    Blümler P
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Resonance Imaging-Compatible Optically Powered Miniature Wireless Modular Lorentz Force Actuators.
    Mutlu S; Yasa O; Erin O; Sitti M
    Adv Sci (Weinh); 2021 Jan; 8(2):2002948. PubMed ID: 33511017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote magnetic actuation using a clinical scale system.
    Rahmer J; Stehning C; Gleich B
    PLoS One; 2018; 13(3):e0193546. PubMed ID: 29494647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Fiber Reinforcement Within Magnetically Actuated Soft Continuum Robots.
    Lloyd P; Koszowska Z; Di Lecce M; Onaizah O; Chandler JH; Valdastri P
    Front Robot AI; 2021; 8():715662. PubMed ID: 34307470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steerable Catheters in Cardiology: Classifying Steerability and Assessing Future Challenges.
    Ali A; Plettenburg DH; Breedveld P
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):679-93. PubMed ID: 26863645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic displacement force and torque on dental keepers in the static magnetic field of an MR scanner.
    Omatsu M; Obata T; Minowa K; Yokosawa K; Inagaki E; Ishizaka K; Shibayama K; Yamamoto T
    J Magn Reson Imaging; 2014 Dec; 40(6):1481-6. PubMed ID: 24259448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steering Algorithm for a Flexible Microrobot to Enhance Guidewire Control in a Coronary Angioplasty Application.
    Kafash Hoshiar A; Jeon S; Kim K; Lee S; Kim JY; Choi H
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30477149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities.
    Niendorf T; Paul K; Oezerdem C; Graessl A; Klix S; Huelnhagen T; Hezel F; Rieger J; Waiczies H; Frahm J; Nagel AM; Oberacker E; Winter L
    NMR Biomed; 2016 Sep; 29(9):1173-97. PubMed ID: 25706103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Magnetic Fields (0.05 T ≤ B ≤ 7 T) on the Response of Personal Thermoluminescent Dosimeters to Ionizing Radiation.
    Copty A; Rabineg G; Berg A
    Health Phys; 2019 Oct; 117(4):345-352. PubMed ID: 31136314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI induced torque and demagnetization in retention magnets for a bone conduction implant.
    Jansson KJ; Håkansson B; Reinfeldt S; Taghavi H; Eeg-Olofsson M
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1887-93. PubMed ID: 24845299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging.
    Du H; Wang Q; Liang Z; Li Q; Li F; Ling D
    Nanoscale; 2022 Dec; 14(47):17483-17499. PubMed ID: 36413075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.