These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37126643)

  • 1. Temperature Dependence of Excitonic Auger Recombination in Excitonic-Complex-Free Monolayer WS
    Kim D; Tran TT; Taniguchi T; Watanabe K; Kim J; Jang JI
    J Phys Chem Lett; 2023 May; 14(18):4259-4265. PubMed ID: 37126643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency Roll-Off Free Electroluminescence from Monolayer WSe
    Uddin SZ; Higashitarumizu N; Kim H; Rahman IKMR; Javey A
    Nano Lett; 2022 Jul; 22(13):5316-5321. PubMed ID: 35729730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic Enhancement of Quantum Yield and Exciton Lifetime of Monolayer WS
    Tran TT; Lee Y; Roy S; Tran TU; Kim Y; Taniguchi T; Watanabe K; Milošević MV; Lim SC; Chaves A; Jang JI; Kim J
    ACS Nano; 2024 Jan; 18(1):220-228. PubMed ID: 38127273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Neutral Exciton Diffusion in Monolayer WS
    Uddin SZ; Higashitarumizu N; Kim H; Yi J; Zhang X; Chrzan D; Javey A
    ACS Nano; 2022 May; 16(5):8005-8011. PubMed ID: 35467828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS
    Fang J; Yao K; Zhang T; Wang M; Jiang T; Huang S; Korgel BA; Terrones M; Alù A; Zheng Y
    Adv Mater; 2022 Apr; 34(15):e2108721. PubMed ID: 35170105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutral and defect-induced exciton annihilation in defective monolayer WS
    Liu H; Wang C; Liu D; Luo J
    Nanoscale; 2019 Apr; 11(16):7913-7920. PubMed ID: 30964503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton dynamics and annihilation in WS2 2D semiconductors.
    Yuan L; Huang L
    Nanoscale; 2015 Apr; 7(16):7402-8. PubMed ID: 25826397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting quantum yields in two-dimensional semiconductors via proximal metal plates.
    Lee Y; Forte JDS; Chaves A; Kumar A; Tran TT; Kim Y; Roy S; Taniguchi T; Watanabe K; Chernikov A; Jang JI; Low T; Kim J
    Nat Commun; 2021 Dec; 12(1):7095. PubMed ID: 34876573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical grade transformation of monolayer transition metal dichalcogenides
    Ryu H; Hong SC; Kim K; Jung Y; Lee Y; Lee K; Kim Y; Kim H; Watanabe K; Taniguchi T; Kim J; Kim K; Cheong H; Lee GH
    Nanoscale; 2024 Mar; 16(11):5836-5844. PubMed ID: 38439548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton Propagation and Halo Formation in Two-Dimensional Materials.
    Perea-Causín R; Brem S; Rosati R; Jago R; Kulig M; Ziegler JD; Zipfel J; Chernikov A; Malic E
    Nano Lett; 2019 Oct; 19(10):7317-7323. PubMed ID: 31532993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Excitonic Rydberg States by Plasmon Enhanced Nonlinear Optical Spectroscopy in Monolayer WS
    Shi J; Lin Z; Zhu Z; Zhou J; Xu GQ; Xu QH
    ACS Nano; 2022 Oct; 16(10):15862-15872. PubMed ID: 36169603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal Inverse Scaling of Exciton-Exciton Annihilation Coefficient with Exciton Lifetime.
    Uddin SZ; Rabani E; Javey A
    Nano Lett; 2021 Jan; 21(1):424-429. PubMed ID: 33320011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Dynamics and Transport of Excitons, Trions, and Biexcitons in Monolayer WS
    Sharma A; Zhu Y; Halbich R; Sun X; Zhang L; Wang B; Lu Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41165-41177. PubMed ID: 36048513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption.
    Zhao S; He D; He J; Zhang X; Yi L; Wang Y; Zhao H
    Nanoscale; 2018 May; 10(20):9538-9546. PubMed ID: 29745949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Unity Light Absorption in a Monolayer WS
    Epstein I; Terrés B; Chaves AJ; Pusapati VV; Rhodes DA; Frank B; Zimmermann V; Qin Y; Watanabe K; Taniguchi T; Giessen H; Tongay S; Hone JC; Peres NMR; Koppens FHL
    Nano Lett; 2020 May; 20(5):3545-3552. PubMed ID: 32283034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twist-angle-controlled neutral exciton annihilation in WS
    Xu L; Duan W; Liu Y; Wang J; Zhao Y; Li H; Liu H; Liu D
    Nanoscale; 2022 Apr; 14(14):5537-5544. PubMed ID: 35343557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Exciton Recombination Pathways in Bilayer WSe
    Uddin SZ; Higashitarumizu N; Kim H; Rabani E; Javey A
    ACS Nano; 2022 Jan; 16(1):1339-1345. PubMed ID: 35014783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auger Recombination in Chemical Vapor Deposition-Grown Monolayer WS
    Cunningham PD; McCreary KM; Jonker BT
    J Phys Chem Lett; 2016 Dec; 7(24):5242-5246. PubMed ID: 27973899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.