These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37126735)
1. Floating Fe Catalyst Formation and Effects of Hydrogen Environment in the Growth of Carbon Nanotubes. Lei J; Bets KV; Penev ES; Yakobson BI J Phys Chem Lett; 2023 May; 14(18):4266-4272. PubMed ID: 37126735 [TBL] [Abstract][Full Text] [Related]
2. High Purity Single Wall Carbon Nanotube by Oxygen-Containing Functional Group of Ferrocene-Derived Catalyst Precursor by Floating Catalyst Chemical Vapor Deposition. Moon SY; Jeon SY; Lee SH; Lee A; Kim SM Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269351 [TBL] [Abstract][Full Text] [Related]
3. Kinetic Modulation of Carbon Nanotube Growth in Direct Spinning for High-Strength Carbon Nanotube Fibers. Hu Z; Sun X; Zhang X; Jia X; Feng X; Cui M; Gao E; Qian L; Gao X; Zhang J J Am Chem Soc; 2024 Apr; ():. PubMed ID: 38600631 [TBL] [Abstract][Full Text] [Related]
4. Catalytic methane decomposition on CNT-supported Fe-catalysts. Yang M; Baeyens J; Li S; Li Z; Zhang H J Environ Manage; 2024 Aug; 365():121592. PubMed ID: 38963959 [TBL] [Abstract][Full Text] [Related]
5. The promoter role of sulfur in carbon nanotube growth. Orbán B; Höltzl T Dalton Trans; 2022 Jun; 51(24):9256-9264. PubMed ID: 35667372 [TBL] [Abstract][Full Text] [Related]
6. Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition. Zhang Q; Wei N; Laiho P; Kauppinen EI Top Curr Chem (Cham); 2017 Nov; 375(6):90. PubMed ID: 29181596 [TBL] [Abstract][Full Text] [Related]
7. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality. Moon SY; Kim WS Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390 [TBL] [Abstract][Full Text] [Related]
8. Controlling the size and the activity of Fe particles for synthesis of carbon nanotubes. Chee SW; Sharma R Micron; 2012 Nov; 43(11):1181-7. PubMed ID: 22349468 [TBL] [Abstract][Full Text] [Related]
9. Continuous Synthesis of Double-Walled Carbon Nanotubes with Water-Assisted Floating Catalyst Chemical Vapor Deposition. Dong L; Park JG; Leonhardt BE; Zhang S; Liang R Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32093150 [TBL] [Abstract][Full Text] [Related]
10. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulation of carbon nanotube growth under a tensile strain. Yamanaka A; Jono R; Tejima S; Fujita JI Sci Rep; 2024 Mar; 14(1):5625. PubMed ID: 38454043 [TBL] [Abstract][Full Text] [Related]
12. Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth. Carpena-Núñez J; Boscoboinik JA; Saber S; Rao R; Zhong JQ; Maschmann MR; Kidambi PR; Dee NT; Zakharov DN; Hart AJ; Stach EA; Maruyama B ACS Nano; 2019 Aug; 13(8):8736-8748. PubMed ID: 31329425 [TBL] [Abstract][Full Text] [Related]
14. Optimization of Synthesis Conditions of Carbon Nanotubes via Ultrasonic-Assisted Floating Catalyst Deposition Using Response Surface Methodology. Mohammadian N; Ghoreishi SM; Hafeziyeh S; Saeidi S; Dionysiou DD Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29747451 [TBL] [Abstract][Full Text] [Related]
15. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Hussain A; Liao Y; Zhang Q; Ding EX; Laiho P; Ahmad S; Wei N; Tian Y; Jiang H; Kauppinen EI Nanoscale; 2018 May; 10(20):9752-9759. PubMed ID: 29767193 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of MWCNTs by chemical vapor deposition of methane using FeMo/MgO catalyst: role of hydrogen and kinetic study. Chotmunkhongsin C; Ratchahat S; Chaiwat W; Charinpanitkul T; Soottitantawat A Sci Rep; 2023 Nov; 13(1):21027. PubMed ID: 38030659 [TBL] [Abstract][Full Text] [Related]
17. Scalable growth of single-walled carbon nanotubes with a highly uniform structure. Hussain A; Ding EX; Mclean B; Mustonen K; Ahmad S; Tavakkoli M; Page AJ; Zhang Q; Kotakoski J; Kauppinen EI Nanoscale; 2020 Jun; 12(23):12263-12267. PubMed ID: 32495811 [TBL] [Abstract][Full Text] [Related]
18. Role of Hydrogen in Catalyst Activation for Plasma-Based Synthesis of Carbon Nanotubes. Tsuji T; Kim J; Sakakita H; Shimizu Y; Chen G; Hata K; Futaba DN; Sakurai S ACS Omega; 2021 Jul; 6(29):18763-18769. PubMed ID: 34337216 [TBL] [Abstract][Full Text] [Related]
19. Formation of Thermally Stable, High-Areal-Density, and Small-Diameter Catalyst Nanoparticles via Intermittent Sputtering Deposition for the High-Density Growth of Carbon Nanotubes. Koji H; Kusumoto Y; Hatta A; Furuta H Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159710 [TBL] [Abstract][Full Text] [Related]
20. Factors governing the growth mode of carbon nanotubes on carbon-based substrates. Kim KJ; Yu WR; Youk JH; Lee J Phys Chem Chem Phys; 2012 Oct; 14(40):14041-8. PubMed ID: 22990211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]