These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37126977)

  • 1. Protein structure-based evaluation of missense variants: Resources, challenges and future directions.
    David A; Sternberg MJE
    Curr Opin Struct Biol; 2023 Jun; 80():102600. PubMed ID: 37126977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Predicted Protein 3D Structures Provide Reliable Insights into whether Missense Variants Are Disease Associated?
    Ittisoponpisan S; Islam SA; Khanna T; Alhuzimi E; David A; Sternberg MJE
    J Mol Biol; 2019 May; 431(11):2197-2212. PubMed ID: 30995449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the clinical interpretation of missense variants in X linked genes using structural analysis.
    Sallah SR; Ellingford JM; Sergouniotis PI; Ramsden SC; Lench N; Lovell SC; Black GC
    J Med Genet; 2022 Apr; 59(4):385-392. PubMed ID: 33766936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting deleterious missense genetic variants via integrative supervised nonnegative matrix tri-factorization.
    Arani AA; Sehhati M; Tabatabaiefar MA
    Sci Rep; 2021 Dec; 11(1):23747. PubMed ID: 34887492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MVP predicts the pathogenicity of missense variants by deep learning.
    Qi H; Zhang H; Zhao Y; Chen C; Long JJ; Chung WK; Guan Y; Shen Y
    Nat Commun; 2021 Jan; 12(1):510. PubMed ID: 33479230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The opportunities and challenges posed by the new generation of deep learning-based protein structure predictors.
    Varadi M; Bordin N; Orengo C; Velankar S
    Curr Opin Struct Biol; 2023 Apr; 79():102543. PubMed ID: 36807079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIGMA leverages protein structural information to predict the pathogenicity of missense variants.
    Zhao H; Du H; Zhao S; Chen Z; Li Y; Xu K; Liu B; Cheng X; Wen W; Li G; Chen G; Zhao Z; Qiu G; ; Liu P; Zhang TJ; Wu Z; Wu N
    Cell Rep Methods; 2024 Jan; 4(1):100687. PubMed ID: 38211594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved pathogenicity prediction for rare human missense variants.
    Wu Y; Li R; Sun S; Weile J; Roth FP
    Am J Hum Genet; 2021 Oct; 108(10):1891-1906. PubMed ID: 34551312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DARVIC: Dihedral angle-reliant variant impact classifier for functional prediction of missense VUS.
    Lagniton PNP; Tam B; Wang SM
    Comput Methods Programs Biomed; 2023 Aug; 238():107596. PubMed ID: 37201251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Evaluation of the Performance of Prediction Algorithms on Clinically Relevant Missense Variants.
    Qorri E; Takács B; Gráf A; Enyedi MZ; Pintér L; Kiss E; Haracska L
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based prediction of the effects of a missense variant on protein stability.
    Yang Y; Chen B; Tan G; Vihinen M; Shen B
    Amino Acids; 2013 Mar; 44(3):847-55. PubMed ID: 23064876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide prediction of disease variant effects with a deep protein language model.
    Brandes N; Goldman G; Wang CH; Ye CJ; Ntranos V
    Nat Genet; 2023 Sep; 55(9):1512-1522. PubMed ID: 37563329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of BRCA1 RING domain variants: computationally derived structural data can improve upon experimental features for training predictive models.
    Masso M
    Integr Biol (Camb); 2020 Sep; 12(9):233-239. PubMed ID: 32984879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-protein transfer learning substantially improves disease variant prediction.
    Jagota M; Ye C; Albors C; Rastogi R; Koehl A; Ioannidis N; Song YS
    Genome Biol; 2023 Aug; 24(1):182. PubMed ID: 37550700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants.
    Mercatanti A; Lodovichi S; Cervelli T; Galli A
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29069390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the relevance of sequence conservation in the prediction of pathogenic missense variants.
    Capriotti E; Fariselli P
    Hum Genet; 2022 Oct; 141(10):1649-1658. PubMed ID: 35098354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico analysis of missense substitutions using sequence-alignment based methods.
    Tavtigian SV; Greenblatt MS; Lesueur F; Byrnes GB;
    Hum Mutat; 2008 Nov; 29(11):1327-36. PubMed ID: 18951440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are machine learning based methods suited to address complex biological problems? Lessons from CAGI-5 challenges.
    Savojardo C; Babbi G; Bovo S; Capriotti E; Martelli PL; Casadio R
    Hum Mutat; 2019 Sep; 40(9):1455-1462. PubMed ID: 31066146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting functional consequences of mutations using molecular interaction network features.
    Ozturk K; Carter H
    Hum Genet; 2022 Jun; 141(6):1195-1210. PubMed ID: 34432150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.