These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biomechanical behavior of PMMA 3D printed biomimetic scaffolds: Effects of physiologically relevant environment. Tilton M; Jacobs E; Overdorff R; Astudillo Potes M; Lu L; Manogharan G J Mech Behav Biomed Mater; 2023 Feb; 138():105612. PubMed ID: 36509012 [TBL] [Abstract][Full Text] [Related]
4. Selective Laser Melting Fabrication of Porous Ti6Al4V Scaffolds With Triply Periodic Minimal Surface Architectures: Structural Features, Cytocompatibility, and Osteogenesis. Lv J; Jin W; Liu W; Qin X; Feng Y; Bai J; Wu Z; Li J Front Bioeng Biotechnol; 2022; 10():899531. PubMed ID: 35694229 [TBL] [Abstract][Full Text] [Related]
5. Design procedure for triply periodic minimal surface based biomimetic scaffolds. Günther F; Wagner M; Pilz S; Gebert A; Zimmermann M J Mech Behav Biomed Mater; 2022 Feb; 126():104871. PubMed ID: 34654652 [TBL] [Abstract][Full Text] [Related]
6. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172 [TBL] [Abstract][Full Text] [Related]
7. 3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties. Guo W; Yang Y; Liu C; Bu W; Guo F; Li J; Wang E; Peng Z; Mai H; You H; Long Y J Mech Behav Biomed Mater; 2023 Jun; 142():105848. PubMed ID: 37099921 [TBL] [Abstract][Full Text] [Related]
8. Additively manufactured porous scaffolds by design for treatment of bone defects. Toosi S; Javid-Naderi MJ; Tamayol A; Ebrahimzadeh MH; Yaghoubian S; Mousavi Shaegh SA Front Bioeng Biotechnol; 2023; 11():1252636. PubMed ID: 38312510 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the design maps of TPMS based bone scaffolds using a computational modeling framework simultaneously considering various conditions. Lu Y; Huo Y; Zou J; Li Y; Yang Z; Zhu H; Wu C Proc Inst Mech Eng H; 2022 Aug; 236(8):1157-1168. PubMed ID: 35647704 [TBL] [Abstract][Full Text] [Related]
10. Additively Manufactured Scaffolds with Optimized Thickness Based on Triply Periodic Minimal Surface. Zhu J; Zou S; Mu Y; Wang J; Jin Y Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295151 [TBL] [Abstract][Full Text] [Related]
11. Mechanical Properties Directionality and Permeability of Fused Triply Periodic Minimal Surface Porous Scaffolds Fabricated by Selective Laser Melting. Ye J; He W; Wei T; Sun C; Zeng S ACS Biomater Sci Eng; 2023 Aug; 9(8):5084-5096. PubMed ID: 37489944 [TBL] [Abstract][Full Text] [Related]
12. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. Li L; Shi J; Zhang K; Yang L; Yu F; Zhu L; Liang H; Wang X; Jiang Q J Orthop Translat; 2019 Oct; 19():94-105. PubMed ID: 31844617 [TBL] [Abstract][Full Text] [Related]
13. Numerical analysis of the influence of triply periodic minimal surface structures morphometry on the mechanical response. Belda R; Megías R; Marco M; Vercher-Martínez A; Giner E Comput Methods Programs Biomed; 2023 Mar; 230():107342. PubMed ID: 36693291 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyapatite 3D-printed scaffolds with Gyroid-Triply periodic minimal surface porous structure: Fabrication and an in vivo pilot study in sheep. Bouakaz I; Drouet C; Grossin D; Cobraiville E; Nolens G Acta Biomater; 2023 Oct; 170():580-595. PubMed ID: 37673232 [TBL] [Abstract][Full Text] [Related]
15. A multiscale optimisation method for bone growth scaffolds based on triply periodic minimal surfaces. Lehder EF; Ashcroft IA; Wildman RD; Ruiz-Cantu LA; Maskery I Biomech Model Mechanobiol; 2021 Dec; 20(6):2085-2096. PubMed ID: 34318358 [TBL] [Abstract][Full Text] [Related]
16. Triply Periodic Minimal Surfaces (TPMS) for the Generation of Porous Architectures Using Stereolithography. Blanquer SBG; Grijpma DW Methods Mol Biol; 2021; 2147():19-30. PubMed ID: 32840807 [TBL] [Abstract][Full Text] [Related]
17. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
18. Quantifying the discrepancies in the geometric and mechanical properties of the theoretically designed and additively manufactured scaffolds. Lu Y; Cui Z; Cheng L; Li J; Yang Z; Zhu H; Wu C J Mech Behav Biomed Mater; 2020 Dec; 112():104080. PubMed ID: 32927278 [TBL] [Abstract][Full Text] [Related]
19. Analytical model for the prediction of permeability of triply periodic minimal surfaces. Asbai-Ghoudan R; Ruiz de Galarreta S; Rodriguez-Florez N J Mech Behav Biomed Mater; 2021 Dec; 124():104804. PubMed ID: 34481309 [TBL] [Abstract][Full Text] [Related]
20. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. Afshar M; Anaraki AP; Montazerian H; Kadkhodapour J J Mech Behav Biomed Mater; 2016 Sep; 62():481-494. PubMed ID: 27281165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]