These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 37127197)

  • 81. Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater.
    Jain M; Khan SA; Sharma K; Jadhao PR; Pant KK; Ziora ZM; Blaskovich MAT
    Bioresour Technol; 2022 Jan; 344(Pt B):126305. PubMed ID: 34752892
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review.
    Couto E; Assemany PP; Assis Carneiro GC; Ferreira Soares DC
    Chemosphere; 2022 Sep; 302():134808. PubMed ID: 35508259
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study.
    Thomaidi VS; Stasinakis AS; Borova VL; Thomaidis NS
    J Hazard Mater; 2015; 283():740-7. PubMed ID: 25464317
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review.
    Al Sharabati M; Abokwiek R; Al-Othman A; Tawalbeh M; Karaman C; Orooji Y; Karimi F
    Environ Res; 2021 Nov; 202():111694. PubMed ID: 34274334
    [TBL] [Abstract][Full Text] [Related]  

  • 85. An Overview of the Impact of Pharmaceuticals on Aquatic Microbial Communities.
    Pinto I; Simões M; Gomes IB
    Antibiotics (Basel); 2022 Nov; 11(12):. PubMed ID: 36551357
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: Which chemicals are the prioritized ones?
    Su C; Cui Y; Liu D; Zhang H; Baninla Y
    Sci Total Environ; 2020 Jun; 720():137652. PubMed ID: 32146411
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review.
    Vinayagam V; Murugan S; Kumaresan R; Narayanan M; Sillanpää M; Viet N Vo D; Kushwaha OS; Jenis P; Potdar P; Gadiya S
    Chemosphere; 2022 Aug; 300():134597. PubMed ID: 35439481
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Removal of trace organic contaminants from domestic wastewater: A meta-analysis comparison of sewage treatment technologies.
    Melvin SD; Leusch FD
    Environ Int; 2016; 92-93():183-8. PubMed ID: 27107223
    [TBL] [Abstract][Full Text] [Related]  

  • 89. E-waste disposal effects on the aquatic environment: Accra, Ghana.
    Huang J; Nkrumah PN; Anim DO; Mensah E
    Rev Environ Contam Toxicol; 2014; 229():19-34. PubMed ID: 24515808
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Practical overview of analytical methods for endocrine-disrupting compounds, pharmaceuticals and personal care products in water and wastewater.
    Comerton AM; Andrews RC; Bagley DM
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1904):3923-39. PubMed ID: 19736228
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies.
    Ahmed ASS; Billah MM; Ali MM; Bhuiyan MKA; Guo L; Mohinuzzaman M; Hossain MB; Rahman MS; Islam MS; Yan M; Cai W
    Sci Total Environ; 2023 Jun; 876():162414. PubMed ID: 36868275
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Priority Substances and Emerging Organic Pollutants in Portuguese Aquatic Environment: A Review.
    Ribeiro C; Ribeiro AR; Tiritan ME
    Rev Environ Contam Toxicol; 2016; 238():1-44. PubMed ID: 26718848
    [TBL] [Abstract][Full Text] [Related]  

  • 93. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment.
    Coccia M; Bontempi E
    Environ Res; 2023 Jul; 229():115938. PubMed ID: 37086878
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants.
    Morsi R; Bilal M; Iqbal HMN; Ashraf SS
    Sci Total Environ; 2020 Apr; 714():136572. PubMed ID: 31986384
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants.
    Okoye CO; Nyaruaba R; Ita RE; Okon SU; Addey CI; Ebido CC; Opabunmi AO; Okeke ES; Chukwudozie KI
    Environ Toxicol Pharmacol; 2022 Nov; 96():103995. PubMed ID: 36210048
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China.
    Fu Z; Chen G; Wang W; Wang J
    Environ Pollut; 2020 Nov; 266(Pt 3):115098. PubMed ID: 32629309
    [TBL] [Abstract][Full Text] [Related]  

  • 97. [Research progress on lyophilization for pretreatment of emerging organic contaminants in environmental samples].
    Zhang Y; Guo S; Sun Q
    Se Pu; 2021 Aug; 39(8):827-834. PubMed ID: 34212583
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Removal of Pharmaceutical Contaminants in Wastewater Using Nanomaterials: A Comprehensive Review.
    Chauhan A; Sillu D; Agnihotri S
    Curr Drug Metab; 2019; 20(6):483-505. PubMed ID: 30479212
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Microplastic pollution in aquatic environments with special emphasis on riverine systems: Current understanding and way forward.
    Vaid M; Sarma K; Gupta A
    J Environ Manage; 2021 Sep; 293():112860. PubMed ID: 34089959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.