BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37127226)

  • 1. "Don't let it to air": A cautionary tale of the potential consequences of surgery of residual cancer.
    Tennakoon G; Auer R
    Brain Behav Immun; 2023 Jul; 111():247-248. PubMed ID: 37127226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perioperative escape from dormancy of spontaneous micro-metastases: A role for malignant secretion of IL-6, IL-8, and VEGF, through adrenergic and prostaglandin signaling.
    Haldar R; Berger LS; Rossenne E; Radin A; Eckerling A; Sandbank E; Sloan EK; Cole SW; Ben-Eliyahu S
    Brain Behav Immun; 2023 Mar; 109():175-187. PubMed ID: 36646396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of β-adrenergic blockade and COX-2 inhibition on healing of colon, muscle, and skin in rats undergoing colonic anastomosis.
    Hazut O; Shaashua L; Benish M; Levi B; Sorski L; Benjamin B; Hoffman A; Zmora O; Ben-Eliyahu S
    Int J Clin Pharmacol Ther; 2011 Sep; 49(9):545-54. PubMed ID: 21888867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor.
    Glasner A; Avraham R; Rosenne E; Benish M; Zmora O; Shemer S; Meiboom H; Ben-Eliyahu S
    J Immunol; 2010 Mar; 184(5):2449-57. PubMed ID: 20124103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of beta blocker combined with COX-2 inhibitor on colonic anastomosis in rats.
    Benjamin B; Hazut O; Shaashua L; Benish M; Zmora N; Barshack I; Hoffman A; Ben-Eliyahu S; Zmora O
    Int J Colorectal Dis; 2010 Dec; 25(12):1459-64. PubMed ID: 20556396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perioperative inhibition of β-adrenergic and COX2 signaling in a clinical trial in breast cancer patients improves tumor Ki-67 expression, serum cytokine levels, and PBMCs transcriptome.
    Haldar R; Shaashua L; Lavon H; Lyons YA; Zmora O; Sharon E; Birnbaum Y; Allweis T; Sood AK; Barshack I; Cole S; Ben-Eliyahu S
    Brain Behav Immun; 2018 Oct; 73():294-309. PubMed ID: 29800703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through β-adrenoceptors blockade and COX2 inhibition.
    Sorski L; Melamed R; Matzner P; Lavon H; Shaashua L; Rosenne E; Ben-Eliyahu S
    Brain Behav Immun; 2016 Nov; 58():91-98. PubMed ID: 27235931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis.
    Benish M; Bartal I; Goldfarb Y; Levi B; Avraham R; Raz A; Ben-Eliyahu S
    Ann Surg Oncol; 2008 Jul; 15(7):2042-52. PubMed ID: 18398660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: A randomized controlled trial.
    Haldar R; Ricon-Becker I; Radin A; Gutman M; Cole SW; Zmora O; Ben-Eliyahu S
    Cancer; 2020 Sep; 126(17):3991-4001. PubMed ID: 32533792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perioperative Intervention by β-Blockade and NF-κB Suppression Reduces the Recurrence Risk of Endometriosis in Mice Due to Incomplete Excision.
    Long Q; Zheng H; Liu X; Guo SW
    Reprod Sci; 2019 May; 26(5):697-708. PubMed ID: 30764712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perioperative COX-2 and β-Adrenergic Blockade Improves Metastatic Biomarkers in Breast Cancer Patients in a Phase-II Randomized Trial.
    Shaashua L; Shabat-Simon M; Haldar R; Matzner P; Zmora O; Shabtai M; Sharon E; Allweis T; Barshack I; Hayman L; Arevalo J; Ma J; Horowitz M; Cole S; Ben-Eliyahu S
    Clin Cancer Res; 2017 Aug; 23(16):4651-4661. PubMed ID: 28490464
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of peripheral NF-kappaB activation by central action of alpha-melanocyte-stimulating hormone.
    Ichiyama T; Sakai T; Catania A; Barsh GS; Furukawa S; Lipton JM
    J Neuroimmunol; 1999 Oct; 99(2):211-7. PubMed ID: 10505977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perioperative biobehavioral interventions to prevent cancer recurrence through combined inhibition of β-adrenergic and cyclooxygenase 2 signaling.
    Ricon I; Hanalis-Miller T; Haldar R; Jacoby R; Ben-Eliyahu S
    Cancer; 2019 Jan; 125(1):45-56. PubMed ID: 30291805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis.
    Iwata C; Kano MR; Komuro A; Oka M; Kiyono K; Johansson E; Morishita Y; Yashiro M; Hirakawa K; Kaminishi M; Miyazono K
    Cancer Res; 2007 Nov; 67(21):10181-9. PubMed ID: 17974958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The β-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor κB signaling.
    Liao X; Che X; Zhao W; Zhang D; Bi T; Wang G
    Oncol Rep; 2010 Dec; 24(6):1669-76. PubMed ID: 21042766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade.
    Choy C; Raytis JL; Smith DD; Duenas M; Neman J; Jandial R; Lew MW
    Oncol Rep; 2016 Jun; 35(6):3135-42. PubMed ID: 27035124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade.
    Partecke LI; Speerforck S; Käding A; Seubert F; Kühn S; Lorenz E; Schwandke S; Sendler M; Keßler W; Trung DN; Oswald S; Weiss FU; Mayerle J; Henkel C; Menges P; Beyer K; Lerch MM; Heidecke CD; von Bernstorff W
    Pancreatology; 2016; 16(3):423-33. PubMed ID: 27083074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The β-adrenergic receptor antagonist propranolol offsets resistance mechanisms to chemotherapeutics in diverse sarcoma subtypes: a pilot study.
    Porcelli L; Garofoli M; Di Fonte R; Fucci L; Volpicella M; Strippoli S; Guida M; Azzariti A
    Sci Rep; 2020 Jun; 10(1):10465. PubMed ID: 32591592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade.
    Ristori C; Filippi L; Dal Monte M; Martini D; Cammalleri M; Fortunato P; la Marca G; Fiorini P; Bagnoli P
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):155-70. PubMed ID: 20739470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of β-adrenoceptor blockade on systemic inflammation and coagulation disturbances in rats with acute traumatic coagulopathy.
    Xu L; Yu WK; Lin ZL; Tan SJ; Bai XW; Ding K; Li N
    Med Sci Monit; 2015 Feb; 21():468-76. PubMed ID: 25676919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.