These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 37127828)
1. Application of machine learning algorithm in prediction of lymph node metastasis in patients with intermediate and high-risk prostate cancer. Wang X; Zhang X; Li H; Zhang M; Liu Y; Li X J Cancer Res Clin Oncol; 2023 Sep; 149(11):8759-8768. PubMed ID: 37127828 [TBL] [Abstract][Full Text] [Related]
2. A Machine Learning-Based Predictive Model for Predicting Lymph Node Metastasis in Patients With Ewing's Sarcoma. Li W; Zhou Q; Liu W; Xu C; Tang ZR; Dong S; Wang H; Li W; Zhang K; Li R; Zhang W; Hu Z; Shibin S; Liu Q; Kuang S; Yin C Front Med (Lausanne); 2022; 9():832108. PubMed ID: 35463005 [TBL] [Abstract][Full Text] [Related]
3. Interpretable machine learning-based clinical prediction model for predicting lymph node metastasis in patients with intrahepatic cholangiocarcinoma. Xie H; Hong T; Liu W; Jia X; Wang L; Zhang H; Xu C; Zhang X; Li WL; Wang Q; Yin C; Lv X BMC Gastroenterol; 2024 Apr; 24(1):137. PubMed ID: 38641789 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning-Based Prediction of Lymph Node Metastasis Among Osteosarcoma Patients. Li W; Liu Y; Liu W; Tang ZR; Dong S; Li W; Zhang K; Xu C; Hu Z; Wang H; Lei Z; Liu Q; Guo C; Yin C Front Oncol; 2022; 12():797103. PubMed ID: 35515104 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma. Feng X; Hong T; Liu W; Xu C; Li W; Yang B; Song Y; Li T; Li W; Zhou H; Yin C Front Endocrinol (Lausanne); 2022; 13():1054358. PubMed ID: 36465636 [TBL] [Abstract][Full Text] [Related]
6. Exploring risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: construction of a novel population-based predictive model. Huang Y; Mao Y; Xu L; Wen J; Chen G BMC Endocr Disord; 2022 Nov; 22(1):269. PubMed ID: 36329470 [TBL] [Abstract][Full Text] [Related]
7. Application of Machine Learning Techniques to Predict Bone Metastasis in Patients with Prostate Cancer. Liu WC; Li MX; Qian WX; Luo ZW; Liao WJ; Liu ZL; Liu JM Cancer Manag Res; 2021; 13():8723-8736. PubMed ID: 34849027 [TBL] [Abstract][Full Text] [Related]
8. A clinical prediction model for predicting the risk of liver metastasis from renal cell carcinoma based on machine learning. Wang Z; Xu C; Liu W; Zhang M; Zou J; Shao M; Feng X; Yang Q; Li W; Shi X; Zang G; Yin C Front Endocrinol (Lausanne); 2022; 13():1083569. PubMed ID: 36686417 [TBL] [Abstract][Full Text] [Related]
9. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma. Feng M; Zhang J; Zhou X; Mo H; Jia L; Zhang C; Hu Y; Yuan W J Oncol; 2022; 2022():6356399. PubMed ID: 36411795 [TBL] [Abstract][Full Text] [Related]
10. A machine learning-based model for clinical prediction of distal metastasis in chondrosarcoma: a multicenter, retrospective study. Wei J; Lu S; Liu W; Liu H; Feng L; Tao Y; Pu Z; Liu Q; Hu Z; Wang H; Li W; Kang W; Yin C; Feng Z PeerJ; 2023; 11():e16485. PubMed ID: 38130920 [TBL] [Abstract][Full Text] [Related]
11. Application of Machine Learning Algorithms to Predict Central Lymph Node Metastasis in T1-T2, Non-invasive, and Clinically Node Negative Papillary Thyroid Carcinoma. Zhu J; Zheng J; Li L; Huang R; Ren H; Wang D; Dai Z; Su X Front Med (Lausanne); 2021; 8():635771. PubMed ID: 33768105 [No Abstract] [Full Text] [Related]
12. Noninvasive prediction of lymph node metastasis in pancreatic cancer using an ultrasound-based clinicoradiomics machine learning model. Wen DY; Chen JM; Tang ZP; Pang JS; Qin Q; Zhang L; He Y; Yang H Biomed Eng Online; 2024 Jun; 23(1):56. PubMed ID: 38890695 [TBL] [Abstract][Full Text] [Related]
13. Prediction of bone metastasis in non-small cell lung cancer based on machine learning. Li MP; Liu WC; Sun BL; Zhong NS; Liu ZL; Huang SH; Zhang ZH; Liu JM Front Oncol; 2022; 12():1054300. PubMed ID: 36698411 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Machine Learning and Logic Regression Algorithms for Predicting Lymph Node Metastasis in Patients with Gastric Cancer: A two-Center Study. Lu T; Fang Y; Liu H; Chen C; Li T; Lu M; Song D Technol Cancer Res Treat; 2024; 23():15330338231222331. PubMed ID: 38190617 [TBL] [Abstract][Full Text] [Related]
15. Dynamic Predictive Models with Visualized Machine Learning for Assessing the Risk of Lung Metastasis in Kidney Cancer Patients. Xu C; Zhou Q; Liu W; Li W; Dong S; Li W; Xu X; Qiao X; Jiang Y; Chen J; Yin C J Oncol; 2022; 2022():5798602. PubMed ID: 36276292 [TBL] [Abstract][Full Text] [Related]
16. The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma. Yuan H; Xu X; Tu S; Chen B; Wei Y; Ma Y BMC Gastroenterol; 2022 Nov; 22(1):463. PubMed ID: 36384504 [TBL] [Abstract][Full Text] [Related]
17. An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning. Li W; Liu W; Hussain Memon F; Wang B; Xu C; Dong S; Wang H; Hu Z; Quan X; Deng Y; Liu Q; Su S; Yin C Comput Intell Neurosci; 2022; 2022():2220527. PubMed ID: 35571720 [TBL] [Abstract][Full Text] [Related]
19. LASSO-based machine learning models for the prediction of central lymph node metastasis in clinically negative patients with papillary thyroid carcinoma. Feng JW; Ye J; Qi GF; Hong LZ; Wang F; Liu SY; Jiang Y Front Endocrinol (Lausanne); 2022; 13():1030045. PubMed ID: 36506061 [TBL] [Abstract][Full Text] [Related]
20. A comparative analysis of eight machine learning models for the prediction of lateral lymph node metastasis in patients with papillary thyroid carcinoma. Feng JW; Ye J; Qi GF; Hong LZ; Wang F; Liu SY; Jiang Y Front Endocrinol (Lausanne); 2022; 13():1004913. PubMed ID: 36387877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]