These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37127851)

  • 21. Single Cobalt Atoms Immobilized on Palladium-Based Nanosheets as 2D Single-Atom Alloy for Efficient Hydrogen Evolution Reaction.
    Yang S; Si Z; Li G; Zhan P; Liu C; Lu L; Han B; Xie H; Qin P
    Small; 2023 Apr; 19(15):e2207651. PubMed ID: 36631281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Screening of Single-Metal-Atom Embedded Graphene-Based Electrocatalysts Stabilized by Heteroatoms.
    Cho A; Park BJ; Han JW
    Front Chem; 2022; 10():873609. PubMed ID: 35464195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyanogel-Derived Synthesis of Porous PdFe Nanohydrangeas as Electrocatalysts for Oxygen Reduction Reaction.
    Wan J; Liu Z; Yang X; Cheng P; Yan C
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transition-metal single atoms embedded into defective BC
    Zhou Y; Gao G; Chu W; Wang LW
    Nanoscale; 2021 Jan; 13(2):1331-1339. PubMed ID: 33410443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic and Potential Synergistic Effects of Surface-Doped P-O Species on Uniform Pd Nanospheres: Breaking the Linear Scaling Relationship toward Electrochemical Oxygen Reduction.
    Luo L; Fu C; Guo Y; Kang Q; Wu A; Cai X; Zhao L; Tan Z; Yin J; Xia G; Shen S; Zhang J
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14146-14156. PubMed ID: 35289588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring of Pd-Pt bimetallic clusters with high stability for oxygen reduction reaction.
    Cheng D; Wang W
    Nanoscale; 2012 Apr; 4(7):2408-15. PubMed ID: 22374435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance.
    Jiao Y; Zheng Y; Jaroniec M; Qiao SZ
    J Am Chem Soc; 2014 Mar; 136(11):4394-403. PubMed ID: 24580116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multimetallic AuPd@Pd@Pt core-interlayer-shell icosahedral electrocatalysts for highly efficient oxygen reduction reaction.
    Xu Q; Chen W; Yan Y; Wu Z; Jiang Y; Li J; Bian T; Zhang H; Wu J; Yang D
    Sci Bull (Beijing); 2018 Apr; 63(8):494-501. PubMed ID: 36658810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-Dimensional Palladium Phosphoronitride for Oxygen Reduction.
    Koh SW; Hu J; Chun H; Yu P; Ge J; Sun Z; Hong W; Liu Q; Nam K; Han B; Liu Z; Li H
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12156-12167. PubMed ID: 35255212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic Structure Tuning of 2D Metal (Hydr)oxides Nanosheets for Electrocatalysis.
    Song Y; Xu B; Liao T; Guo J; Wu Y; Sun Z
    Small; 2021 Mar; 17(9):e2002240. PubMed ID: 32851763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis.
    Lai J; Guo S
    Small; 2017 Dec; 13(48):. PubMed ID: 29116672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction.
    Jiang M; Li J; Li J; Zhao Y; Pan L; Cao Q; Wang D; Du Y
    Nanoscale; 2019 May; 11(19):9654-9660. PubMed ID: 31065631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries.
    Chandrasekaran S; Hu R; Yao L; Sui L; Liu Y; Abdelkader A; Li Y; Ren X; Deng L
    Nanomicro Lett; 2023 Feb; 15(1):48. PubMed ID: 36773092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis.
    Wang C; Shang H; Wang Y; Li J; Guo S; Guo J; Du Y
    Nanoscale; 2021 Apr; 13(15):7279-7284. PubMed ID: 33889888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ternary core-shell PdM@Pt (M = Mn and Fe) nanoparticle electrocatalysts with enhanced ORR catalytic properties.
    Park HU; Park AH; Shi W; Park GG; Kwon YU
    Ultrason Sonochem; 2019 Nov; 58():104673. PubMed ID: 31554145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Realizing Efficient Catalytic Performance and High Selectivity for Oxygen Reduction Reaction on a 2D Ni
    Zhao L; Yu G; Huang X; Chen W
    Inorg Chem; 2022 Jan; 61(4):2284-2291. PubMed ID: 35044752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boosting the electrocatalytic activity of Pd/C by Cu alloying: Insight on Pd/Cu composition and reaction pathway.
    Goswami C; Saikia H; Jyoti Borah B; Jyoti Kalita M; Tada K; Tanaka S; Bharali P
    J Colloid Interface Sci; 2021 Apr; 587():446-456. PubMed ID: 33383434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical Conversion of CO
    Tackett BM; Lee JH; Chen JG
    Acc Chem Res; 2020 Aug; 53(8):1535-1544. PubMed ID: 32662622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.