BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37128373)

  • 21. A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews.
    Chen J; Druhl E; Polepalli Ramesh B; Houston TK; Brandt CA; Zulman DM; Vimalananda VG; Malkani S; Yu H
    J Med Internet Res; 2018 Jan; 20(1):e26. PubMed ID: 29358159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning.
    Lee RY; Brumback LC; Lober WB; Sibley J; Nielsen EL; Treece PD; Kross EK; Loggers ET; Fausto JA; Lindvall C; Engelberg RA; Curtis JR
    J Pain Symptom Manage; 2021 Jan; 61(1):136-142.e2. PubMed ID: 32858164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated Extraction of Pain Symptoms: A Natural Language Approach using Electronic Health Records.
    Dave AD; Ruano G; Kost J; Wang X
    Pain Physician; 2022 Mar; 25(2):E245-E254. PubMed ID: 35322976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A frame semantic overview of NLP-based information extraction for cancer-related EHR notes.
    Datta S; Bernstam EV; Roberts K
    J Biomed Inform; 2019 Dec; 100():103301. PubMed ID: 31589927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
    Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomedical relation extraction via knowledge-enhanced reading comprehension.
    Chen J; Hu B; Peng W; Chen Q; Tang B
    BMC Bioinformatics; 2022 Jan; 23(1):20. PubMed ID: 34991458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep contextualized embeddings for quantifying the informative content in biomedical text summarization.
    Moradi M; Dorffner G; Samwald M
    Comput Methods Programs Biomed; 2020 Feb; 184():105117. PubMed ID: 31627150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here.
    Khosravi B; Rouzrokh P; Erickson BJ
    J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting the presence of an indwelling urinary catheter and urinary symptoms in hospitalized patients using natural language processing.
    Gundlapalli AV; Divita G; Redd A; Carter ME; Ko D; Rubin M; Samore M; Strymish J; Krein S; Gupta K; Sales A; Trautner BW
    J Biomed Inform; 2017 Jul; 71S():S39-S45. PubMed ID: 27404849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracting biomedical events from pairs of text entities.
    Liu X; Bordes A; Grandvalet Y
    BMC Bioinformatics; 2015; 16 Suppl 10(Suppl 10):S8. PubMed ID: 26201478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural language processing of lifestyle modification documentation.
    Shoenbill K; Song Y; Gress L; Johnson H; Smith M; Mendonca EA
    Health Informatics J; 2020 Mar; 26(1):388-405. PubMed ID: 30791802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EXTraction of EMR numerical data: an efficient and generalizable tool to EXTEND clinical research.
    Cai T; Zhang L; Yang N; Kumamaru KK; Rybicki FJ; Cai T; Liao KP
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):226. PubMed ID: 31730484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated identification of eviction status from electronic health record notes.
    Yao Z; Tsai J; Liu W; Levy DA; Druhl E; Reisman JI; Yu H
    J Am Med Inform Assoc; 2023 Jul; 30(8):1429-1437. PubMed ID: 37203429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH
    Am J Obstet Gynecol; 2022 Sep; 227(3):511.e1-511.e8. PubMed ID: 35430230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enriching contextualized language model from knowledge graph for biomedical information extraction.
    Fei H; Ren Y; Zhang Y; Ji D; Liang X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De-Identifying Swedish EHR Text Using Public Resources in the General Domain.
    Chomutare T; Yigzaw KY; Budrionis A; Makhlysheva A; Godtliebsen F; Dalianis H
    Stud Health Technol Inform; 2020 Jun; 270():148-152. PubMed ID: 32570364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protected Health Information Recognition of Unstructured Code-Mixed Electronic Health Records in Taiwan.
    Lee YQ; Wang BH; Su CH; Chen PT; Lin WQ; Wu CS; Dai HJ
    Stud Health Technol Inform; 2022 Jun; 290():627-631. PubMed ID: 35673092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semantic biomedical resource discovery: a Natural Language Processing framework.
    Sfakianaki P; Koumakis L; Sfakianakis S; Iatraki G; Zacharioudakis G; Graf N; Marias K; Tsiknakis M
    BMC Med Inform Decis Mak; 2015 Sep; 15():77. PubMed ID: 26423616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validating a natural language processing tool to exclude psychogenic nonepileptic seizures in electronic medical record-based epilepsy research.
    Hamid H; Fodeh SJ; Lizama AG; Czlapinski R; Pugh MJ; LaFrance WC; Brandt CA
    Epilepsy Behav; 2013 Dec; 29(3):578-80. PubMed ID: 24135384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.