These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37128546)
1. Subdiffusion in the Presence of Reactive Boundaries: A Generalized Feynman-Kac Approach. Kay T; Giuggioli L J Stat Phys; 2023; 190(5):92. PubMed ID: 37128546 [TBL] [Abstract][Full Text] [Related]
2. Fractional Feynman-Kac equation for weak ergodicity breaking. Carmi S; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061104. PubMed ID: 22304037 [TBL] [Abstract][Full Text] [Related]
3. Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force. Magdziarz M; Weron A; Klafter J Phys Rev Lett; 2008 Nov; 101(21):210601. PubMed ID: 19113398 [TBL] [Abstract][Full Text] [Related]
4. Feynman-Kac formula for stochastic hybrid systems. Bressloff PC Phys Rev E; 2017 Jan; 95(1-1):012138. PubMed ID: 28208495 [TBL] [Abstract][Full Text] [Related]
5. Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion. Kosztołowicz T Phys Rev E; 2023 Jun; 107(6-1):064103. PubMed ID: 37464604 [TBL] [Abstract][Full Text] [Related]
6. Subdiffusion-reaction processes with A→B reactions versus subdiffusion-reaction processes with A+B→B reactions. Kosztołowicz T; Lewandowska KD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032136. PubMed ID: 25314424 [TBL] [Abstract][Full Text] [Related]
8. Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces. Henry BI; Langlands TA; Straka P Phys Rev Lett; 2010 Oct; 105(17):170602. PubMed ID: 21231032 [TBL] [Abstract][Full Text] [Related]
9. The area reactivity model of geminate recombination. Prüstel T; Meier-Schellersheim M J Chem Phys; 2014 Mar; 140(11):114106. PubMed ID: 24655171 [TBL] [Abstract][Full Text] [Related]
13. Motion of a Brownian particle in the presence of reactive boundaries. Pal A; Castillo IP; Kundu A Phys Rev E; 2019 Oct; 100(4-1):042128. PubMed ID: 31770986 [TBL] [Abstract][Full Text] [Related]
14. Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations. Angstmann CN; Henry BI Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286804 [TBL] [Abstract][Full Text] [Related]
15. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Chechkin AV; Gorenflo R; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046129. PubMed ID: 12443281 [TBL] [Abstract][Full Text] [Related]
16. Tempered fractional Feynman-Kac equation: Theory and examples. Wu X; Deng W; Barkai E Phys Rev E; 2016 Mar; 93(3):032151. PubMed ID: 27078336 [TBL] [Abstract][Full Text] [Related]
17. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. Gajda J; Magdziarz M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575 [TBL] [Abstract][Full Text] [Related]
18. Rate coefficients, binding probabilities, and related quantities for area reactivity models. Prüstel T; Meier-Schellersheim M J Chem Phys; 2014 Nov; 141(19):194115. PubMed ID: 25416882 [TBL] [Abstract][Full Text] [Related]
19. Anomalous diffusion with absorbing boundary. Kantor Y; Kardar M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061121. PubMed ID: 18233828 [TBL] [Abstract][Full Text] [Related]
20. Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains. Abad E; Angstmann CN; Henry BI; McGann AV; Le Vot F; Yuste SB Phys Rev E; 2020 Sep; 102(3-1):032111. PubMed ID: 33075977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]