These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37128714)
1. Preparation of nanocellulose by a biological method from hemp stalk in contrast to the chemical method and its application on the electrospun composite film. Zhang X; Guo J; Liu Y; Hao X; Yao Q; Xu Y; Guo Y J Mater Chem B; 2023 May; 11(19):4191-4202. PubMed ID: 37128714 [TBL] [Abstract][Full Text] [Related]
2. Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. Wang Z; Yao Z; Zhou J; He M; Jiang Q; Li A; Li S; Liu M; Luo S; Zhang D Int J Biol Macromol; 2019 May; 129():878-886. PubMed ID: 30735776 [TBL] [Abstract][Full Text] [Related]
3. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099 [TBL] [Abstract][Full Text] [Related]
4. Strong, bacteriostatic and transparent polylactic acid-based composites by incorporating quaternary ammonium cellulose nanocrystals. Wang Q; Liu S; Chen W; Ni Y; Zeng S; Chen P; Xu Y; Nie W; Zhou Y Int J Biol Macromol; 2024 Aug; 274(Pt 1):132645. PubMed ID: 38917581 [TBL] [Abstract][Full Text] [Related]
5. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Du H; Liu W; Zhang M; Si C; Zhang X; Li B Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792 [TBL] [Abstract][Full Text] [Related]
7. Electrospun polylactic acid nanofiber film modified by silver oxide deposited on hemp fibers for antibacterial fruit packaging. Liao M; Pan Y; Fu X; Wu S; Gan S; Wu Z; Zhao H; Zheng W; Cao Y; Zhou W; Dong X Int J Biol Macromol; 2023 Dec; 253(Pt 2):126569. PubMed ID: 37648140 [TBL] [Abstract][Full Text] [Related]
8. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Martelli-Tosi M; Masson MM; Silva NC; Esposto BS; Barros TT; Assis OBG; Tapia-Blácido DR Carbohydr Polym; 2018 Oct; 198():61-68. PubMed ID: 30093040 [TBL] [Abstract][Full Text] [Related]
9. Sandwich-Structured, Hydrophobic, Nanocellulose-Reinforced Polyvinyl Alcohol as an Alternative Straw Material. Chou CT; Shi SC; Chen CK Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960998 [TBL] [Abstract][Full Text] [Related]
10. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Bai L; Liu Y; Ding A; Ren N; Li G; Liang H Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545 [TBL] [Abstract][Full Text] [Related]
11. Efficient extraction of nanocellulose from lignocellulose using aqueous butanediol fractionation to improve the performance of waterborne wood coating. Song X; Zhu Z; Tang S; Chi X; Han G; Cheng W Carbohydr Polym; 2023 Dec; 322():121347. PubMed ID: 37839849 [TBL] [Abstract][Full Text] [Related]
12. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. Jiang F; Hsieh YL ACS Appl Mater Interfaces; 2014 Nov; 6(22):20075-84. PubMed ID: 25341690 [TBL] [Abstract][Full Text] [Related]
13. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton. Abu-Danso E; Srivastava V; Sillanpää M; Bhatnagar A Int J Biol Macromol; 2017 Sep; 102():248-257. PubMed ID: 28366848 [TBL] [Abstract][Full Text] [Related]
14. Preparation of nanocellulose in high yield via chemi-mechanical synergy. Wang J; Xu J; Zhu S; Wu Q; Li J; Gao Y; Wang B; Li J; Gao W; Zeng J; Chen K Carbohydr Polym; 2021 Jan; 251():117094. PubMed ID: 33142632 [TBL] [Abstract][Full Text] [Related]
15. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Sung SH; Chang Y; Han J Carbohydr Polym; 2017 Aug; 169():495-503. PubMed ID: 28504172 [TBL] [Abstract][Full Text] [Related]
16. The Crystallinity and Aspect Ratio of Cellulose Nanomaterials Determine Their Pro-Inflammatory and Immune Adjuvant Effects In Vitro and In Vivo. Wang X; Chang CH; Jiang J; Liu Q; Liao YP; Lu J; Li L; Liu X; Kim J; Ahmed A; Nel AE; Xia T Small; 2019 Oct; 15(42):e1901642. PubMed ID: 31461215 [TBL] [Abstract][Full Text] [Related]
17. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Oun AA; Rhim JW Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095 [TBL] [Abstract][Full Text] [Related]
18. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Borkotoky SS; Dhar P; Katiyar V Int J Biol Macromol; 2018 Jan; 106():433-446. PubMed ID: 28797817 [TBL] [Abstract][Full Text] [Related]
19. The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties. Chai H; Chang Y; Zhang Y; Chen Z; Zhong Y; Zhang L; Sui X; Xu H; Mao Z Int J Biol Macromol; 2020 Jul; 155():1578-1588. PubMed ID: 31751689 [TBL] [Abstract][Full Text] [Related]
20. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs. Jun D; Guomin Z; Mingzhu P; Leilei Z; Dagang L; Rui Z Carbohydr Polym; 2017 Jul; 168():255-262. PubMed ID: 28457448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]