These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37128728)

  • 1. Laplace inverted pulsed EPR relaxation to study contact between active material and carbon black in Li-organic battery cathodes.
    Daniel DT; Szczuka C; Jakes P; Eichel RA; Granwehr J
    Phys Chem Chem Phys; 2023 May; 25(18):12767-12776. PubMed ID: 37128728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal investigation of electronic transport in PTMA and its impact on organic radical battery performance.
    Daniel DT; Oevermann S; Mitra S; Rudolf K; Heuer A; Eichel RA; Winter M; Diddens D; Brunklaus G; Granwehr J
    Sci Rep; 2023 Jul; 13(1):10934. PubMed ID: 37414786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Conducting Copolymer Bearing Electro-Active Nitroxide Groups as Organic Electrode Materials for Batteries.
    Assumma L; Kervella Y; Mouesca JM; Mendez M; Maurel V; Dubois L; Gutel T; Sadki S
    ChemSusChem; 2020 May; 13(9):2419-2427. PubMed ID: 32315495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Alternative to Carbon Additives: The Fabrication of Conductive Layers Enabled by Soluble Conducting Polymer Precursors - A Case Study for Organic Batteries.
    Strietzel C; Oka K; Strømme M; Emanuelsson R; Sjödin M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5349-5356. PubMed ID: 33481558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical Conductivity-Relay between Organic Charge-Transfer and Radical Salts toward Conductive Additive-Free Rechargeable Battery.
    Fujihara Y; Kobayashi H; Takaishi S; Tomai T; Yamashita M; Honma I
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25748-25755. PubMed ID: 32412238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers.
    Huang Q; Choi D; Cosimbescu L; Lemmon JP
    Phys Chem Chem Phys; 2013 Dec; 15(48):20921-8. PubMed ID: 24202318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanomaterials used as conductive additives in lithium ion batteries.
    Zhang Q; Yu Z; Du P; Su C
    Recent Pat Nanotechnol; 2010 Jun; 4(2):100-10. PubMed ID: 20415660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries.
    Shi Y; Zhou X; Zhang J; Bruck AM; Bond AC; Marschilok AC; Takeuchi KJ; Takeuchi ES; Yu G
    Nano Lett; 2017 Mar; 17(3):1906-1914. PubMed ID: 28191854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmented carbon nanotube macrofilms as adhesive conductors for lithium-ion batteries.
    Cao Z; Wei B
    ACS Nano; 2014 Mar; 8(3):3049-59. PubMed ID: 24564355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning of composition and morphology of LiFePO
    Erabhoina H; Thelakkat M
    Sci Rep; 2022 Mar; 12(1):5454. PubMed ID: 35361808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes.
    Chen L; Dilena E; Paolella A; Bertoni G; Ansaldo A; Colombo M; Marras S; Scrosati B; Manna L; Monaco S
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4069-75. PubMed ID: 26799094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turning Carbon Black to Hollow Carbon Nanospheres for Enhancing Charge Storage Capacities of LiMn
    Wutthiprom J; Phattharasupakun N; Sawangphruk M
    ACS Omega; 2017 Jul; 2(7):3730-3738. PubMed ID: 31457687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of an Electron/Ion Dual-Conductive Cathode Framework for High-Performance All-Solid-State Lithium Batteries.
    Wang J; Yan X; Zhang Z; Guo R; Ying H; Han G; Han WQ
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41323-41332. PubMed ID: 32830944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries.
    Mao M; Wang S; Lin Z; Liu T; Hu YS; Li H; Huang X; Chen L; Suo L
    Adv Mater; 2021 Feb; 33(8):e2005781. PubMed ID: 33470470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.
    Hauffman G; Maguin Q; Bourgeois JP; Vlad A; Gohy JF
    Macromol Rapid Commun; 2014 Jan; 35(2):228-233. PubMed ID: 24127365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergetic Effect of Hybrid Conductive Additives for High-Capacity and Excellent Cyclability in Si Anodes.
    Yoo BI; Kim HM; Choi MJ; Yoo JK
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234483
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.