These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37128756)

  • 21. Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study.
    Wu P; Li P; Huang M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine.
    Carrasco JA; Congost-Escoin P; Assebban M; Abellán G
    Chem Soc Rev; 2023 Feb; 52(4):1288-1330. PubMed ID: 36744431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Few-Layer Antimonene: Anisotropic Expansion and Reversible Crystalline-Phase Evolution Enable Large-Capacity and Long-Life Na-Ion Batteries.
    Tian W; Zhang S; Huo C; Zhu D; Li Q; Wang L; Ren X; Xie L; Guo S; Chu PK; Zeng H; Huo K
    ACS Nano; 2018 Feb; 12(2):1887-1893. PubMed ID: 29370516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis.
    Feng T; Tao S; Yue D; Zeng Q; Chen W; Yang B
    Small; 2020 Aug; 16(31):e2001295. PubMed ID: 32529773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation.
    Wang H; Yuan X; Zeng G; Wu Y; Liu Y; Jiang Q; Gu S
    Adv Colloid Interface Sci; 2015 Jul; 221():41-59. PubMed ID: 25983012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion.
    Yun Q; Lu Q; Zhang X; Tan C; Zhang H
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):626-646. PubMed ID: 28834184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications.
    Xia H; Xu Q; Zhang J
    Nanomicro Lett; 2018; 10(4):66. PubMed ID: 30393714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis.
    Li F; Du M; Xiao X; Xu Q
    ACS Nano; 2022 Dec; 16(12):19913-19939. PubMed ID: 36399093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nitride in energy conversion and storage: recent advances and future prospects.
    Gong Y; Li M; Wang Y
    ChemSusChem; 2015 Mar; 8(6):931-46. PubMed ID: 25688746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-Dimensional Conjugated Metal-Organic Frameworks for Electrocatalysis: Opportunities and Challenges.
    Zhong H; Wang M; Chen G; Dong R; Feng X
    ACS Nano; 2022 Feb; 16(2):1759-1780. PubMed ID: 35049290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in Carbon-Based Electrodes for Energy Storage and Conversion.
    Kothandam G; Singh G; Guan X; Lee JM; Ramadass K; Joseph S; Benzigar M; Karakoti A; Yi J; Kumar P; Vinu A
    Adv Sci (Weinh); 2023 Jun; 10(18):e2301045. PubMed ID: 37096838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Development of Electrocatalytic CO
    Liang F; Zhang K; Zhang L; Zhang Y; Lei Y; Sun X
    Small; 2021 Nov; 17(44):e2100323. PubMed ID: 34151517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis.
    Zhang Z; Liu P; Song Y; Hou Y; Xu B; Liao T; Zhang H; Guo J; Sun Z
    Adv Sci (Weinh); 2022 Dec; 9(35):e2204297. PubMed ID: 36266983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress on Antimonene: A New Bidimensional Material.
    Ares P; Palacios JJ; Abellán G; Gómez-Herrero J; Zamora F
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29076558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conducting-Polymer-Based Materials for Electrochemical Energy Conversion and Storage.
    Wang J; Wang J; Kong Z; Lv K; Teng C; Zhu Y
    Adv Mater; 2017 Dec; 29(45):. PubMed ID: 28922486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective.
    Ren X; Wang H; Chen J; Xu W; He Q; Wang H; Zhan F; Chen S; Chen L
    Small; 2023 Feb; 19(8):e2204121. PubMed ID: 36526607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition Metal Nitrides for Electrocatalytic Application: Progress and Rational Design.
    Meng Z; Zheng S; Luo R; Tang H; Wang R; Zhang R; Tian T; Tang H
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities.
    Wang Y; Chu F; Zeng J; Wang Q; Naren T; Li Y; Cheng Y; Lei Y; Wu F
    ACS Nano; 2021 Jan; 15(1):210-239. PubMed ID: 33405889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage.
    Yu H; Wang Y; Jing Y; Ma J; Du CF; Yan Q
    Small; 2019 Jun; 15(25):e1901503. PubMed ID: 31066206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in Layered Ti
    Xiong D; Li X; Bai Z; Lu S
    Small; 2018 Apr; 14(17):e1703419. PubMed ID: 29399994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.