BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37129034)

  • 1. Sex differences in the skin microbiome of burn scars.
    Jung Y; Cui HS; Joo SY; Lee EK; Seo CH; Cho YS
    Wound Repair Regen; 2023; 31(4):547-558. PubMed ID: 37129034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The skin microbiome of wound scars and unaffected skin in patients with moderate to severe burns in the subacute phase.
    Liu SH; Huang YC; Chen LY; Yu SC; Yu HY; Chuang SS
    Wound Repair Regen; 2018 Mar; 26(2):182-191. PubMed ID: 29663582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scar formation following excisional and burn injuries in a red Duroc pig model.
    Blackstone BN; Kim JY; McFarland KL; Sen CK; Supp DM; Bailey JK; Powell HM
    Wound Repair Regen; 2017 Aug; 25(4):618-631. PubMed ID: 28727221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Transepidermal water loss of scar skin in three types of scar patients and its correlation with scar severity].
    Fan H; Zhang JW; Liu DJ; Liu FB
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):629-634. PubMed ID: 34139828
    [No Abstract]   [Full Text] [Related]  

  • 5. Rete ridges are decreased in dyschromic burn hypertrophic scar: A histological study.
    Carney BC; Travis TE; Keyloun JW; Moffatt LT; Johnson LS; McLawhorn MM; Shupp JW
    Burns; 2024 Feb; 50(1):66-74. PubMed ID: 37777456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic inflammatory foci in burn scars: data from a porcine burn model.
    Wang XQ; Phillips GE; Wilkie I; Greer R; Kimble RM
    J Cutan Pathol; 2010 May; 37(5):530-4. PubMed ID: 19614732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal burn scar quantification.
    Nedelec B; Correa JA; de Oliveira A; LaSalle L; Perrault I
    Burns; 2014 Dec; 40(8):1504-12. PubMed ID: 24703337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Burns objective scar scale (BOSS): Validation of an objective measurement devices based burn scar scale panel.
    Lee KC; Bamford A; Gardiner F; Agovino A; Ter Horst B; Bishop J; Grover L; Logan A; Moiemen N
    Burns; 2020 Feb; 46(1):110-120. PubMed ID: 31708256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosstalk among adipose tissue, vitamin D level, and biomechanical properties of hypertrophic burn scars.
    Cho YS; Lee J; Joo SY; Seo CH
    Burns; 2019 Sep; 45(6):1430-1437. PubMed ID: 31076207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis - Keloids and hypertrophic scars may be vascular disorders.
    Ogawa R; Akaishi S
    Med Hypotheses; 2016 Nov; 96():51-60. PubMed ID: 27959277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Factors Influencing Scar Formation on the Scar Microbiome in Patients with Burns.
    Jung Y; Cui HS; Lee EK; Joo SY; Seo CH; Cho YS
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of burn rehabilitation massage therapy on hypertrophic scar after burn: a randomized controlled trial.
    Cho YS; Jeon JH; Hong A; Yang HT; Yim H; Cho YS; Kim DH; Hur J; Kim JH; Chun W; Lee BC; Seo CH
    Burns; 2014 Dec; 40(8):1513-20. PubMed ID: 24630820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional CO
    Baumann ME; Blackstone BN; Malara MM; Clairmonte IA; Supp DM; Bailey JK; Powell HM
    Burns; 2020 Jun; 46(4):937-948. PubMed ID: 31767253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Association Between Postburn Vitamin D Deficiency and the Biomechanical Properties of Hypertrophic Scars.
    Cho YS; Seo CH; Joo SY; Song J; Cha E; Ohn SH
    J Burn Care Res; 2019 Apr; 40(3):274-280. PubMed ID: 30806461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A prospective randomized controlled clinical study on the treatment of hypertrophic scar after burn by fractional carbon dioxide laser combined with autologous fat injection].
    Huang Z; Chen Y; Wang P; Zheng DW; Zong YL; Lyu GZ
    Zhonghua Shao Shang Za Zhi; 2021 Jan; 37(1):49-56. PubMed ID: 33499569
    [No Abstract]   [Full Text] [Related]  

  • 16. Epidermal participation in post-burn hypertrophic scar development.
    Hakvoort TE; Altun V; Ramrattan RS; van der Kwast TH; Benner R; van Zuijlen PP; Vloemans AF; Prens EP
    Virchows Arch; 1999 Mar; 434(3):221-6. PubMed ID: 10190301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens.
    Oliveira GV; Hawkins HK; Chinkes D; Burke A; Tavares AL; Ramos-e-Silva M; Albrecht TB; Kitten GT; Herndon DN
    Int Wound J; 2009 Dec; 6(6):445-52. PubMed ID: 20051096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Objective assessment of burn scar vascularity, erythema, pliability, thickness, and planimetry.
    Oliveira GV; Chinkes D; Mitchell C; Oliveras G; Hawkins HK; Herndon DN
    Dermatol Surg; 2005 Jan; 31(1):48-58. PubMed ID: 15720096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Hair Density and Sub-epidermal Tissue Thickness in Burn Scars Using High-Definition Ultrasound Imaging.
    Blome-Eberwein SA; Roarabaugh C; Gogal C
    J Burn Care Res; 2020 Feb; 41(2):421-426. PubMed ID: 31833552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new experimental hypertrophic scar model in guinea pigs.
    Aksoy MH; Vargel I; Canter IH; Erk Y; Sargon M; Pinar A; Tezel GG
    Aesthetic Plast Surg; 2002; 26(5):388-96. PubMed ID: 12432481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.