These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37129167)
1. Investigating Trans-differentiation of Glioblastoma Cells in an Hatlen RR; Rajagopalan P ACS Biomater Sci Eng; 2023 Jun; 9(6):3445-3461. PubMed ID: 37129167 [TBL] [Abstract][Full Text] [Related]
2. The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels. Ngo MT; Harley BA Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28941173 [TBL] [Abstract][Full Text] [Related]
3. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth. Zhu Y; Zhao K; Prinz A; Keyvani K; Lambertz N; Kreitschmann-Andermahr I; Lei T; Sure U Neuro Oncol; 2016 Apr; 18(4):538-48. PubMed ID: 26254477 [TBL] [Abstract][Full Text] [Related]
4. Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Ngo MT; Harley BAC Biomaterials; 2019 Apr; 198():122-134. PubMed ID: 29941152 [TBL] [Abstract][Full Text] [Related]
5. 3D-Bioprinted Co-Cultures of Glioblastoma Multiforme and Mesenchymal Stromal Cells Indicate a Role for Perivascular Niche Cells in Shaping Glioma Chemokine Microenvironment. Zielniok K; Rusinek K; Słysz A; Lachota M; Bączyńska E; Wiewiórska-Krata N; Szpakowska A; Ciepielak M; Foroncewicz B; Mucha K; Zagożdżon R; Pojda Z Cells; 2024 Aug; 13(17):. PubMed ID: 39272976 [TBL] [Abstract][Full Text] [Related]
6. Mesenchymal glioblastoma-induced mature de-novo vessel formation of vascular endothelial cells in a microfluidic device. Amemiya T; Hata N; Mizoguchi M; Yokokawa R; Kawamura Y; Hatae R; Sangatsuda Y; Kuga D; Fujioka Y; Takigawa K; Akagi Y; Yoshimoto K; Iihara K; Miura T Mol Biol Rep; 2021 Jan; 48(1):395-403. PubMed ID: 33387197 [TBL] [Abstract][Full Text] [Related]
7. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
8. Analysis of angiogenesis related factors in glioblastoma, peritumoral tissue and their derived cancer stem cells. D'Alessio A; Proietti G; Lama G; Biamonte F; Lauriola L; Moscato U; Vescovi A; Mangiola A; Angelucci C; Sica G Oncotarget; 2016 Nov; 7(48):78541-78556. PubMed ID: 27705944 [TBL] [Abstract][Full Text] [Related]
10. Endothelial cells promote 3D invasion of GBM by IL-8-dependent induction of cancer stem cell properties. McCoy MG; Nyanyo D; Hung CK; Goerger JP; R Zipfel W; Williams RM; Nishimura N; Fischbach C Sci Rep; 2019 Jun; 9(1):9069. PubMed ID: 31227783 [TBL] [Abstract][Full Text] [Related]
11. Cancer stem cell-vascular endothelial cell interactions in glioblastoma. Sharma A; Shiras A Biochem Biophys Res Commun; 2016 May; 473(3):688-92. PubMed ID: 26692486 [TBL] [Abstract][Full Text] [Related]
12. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
13. Evaluating glioblastoma tumour sphere growth and migration in interaction with astrocytes using 3D collagen-hyaluronic acid hydrogels. Cui Y; Lee P; Reardon JJ; Wang A; Lynch S; Otero JJ; Sizemore G; Winter JO J Mater Chem B; 2023 Jun; 11(24):5442-5459. PubMed ID: 37159233 [TBL] [Abstract][Full Text] [Related]
14. Glioblastoma Cells Do Not Affect Axitinib-Dependent Senescence of HUVECs in a Transwell Coculture Model. Merolle M; Mongiardi MP; Piras M; Levi A; Falchetti ML Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098270 [TBL] [Abstract][Full Text] [Related]
15. Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels. Wang C; Li J; Sinha S; Peterson A; Grant GA; Yang F Biomaterials; 2019 May; 202():35-44. PubMed ID: 30836243 [TBL] [Abstract][Full Text] [Related]
16. Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression. Nana AW; Yang PM; Lin HY Asian Pac J Cancer Prev; 2015; 16(16):6813-23. PubMed ID: 26514451 [TBL] [Abstract][Full Text] [Related]
17. Novel chemical library screen identifies naturally occurring plant products that specifically disrupt glioblastoma-endothelial cell interactions. Sengupta R; Barone A; Marasa J; Taylor S; Jackson E; Warrington NM; Rao S; Kim AH; Leonard JR; Piwnica-Worms D; Rubin JB Oncotarget; 2015 Jul; 6(21):18282-92. PubMed ID: 26286961 [TBL] [Abstract][Full Text] [Related]
18. Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. Birnbaum T; Hildebrandt J; Nuebling G; Sostak P; Straube A J Neurooncol; 2011 Oct; 105(1):57-65. PubMed ID: 21547397 [TBL] [Abstract][Full Text] [Related]
19. Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1. Adamski V; Hattermann K; Kubelt C; Cohrs G; Lucius R; Synowitz M; Sebens S; Held-Feindt J Oncogene; 2020 May; 39(22):4421-4435. PubMed ID: 32346064 [TBL] [Abstract][Full Text] [Related]