These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37129679)
21. Anodic oxidation of benzoquinone using diamond anode. Panizza M Environ Sci Pollut Res Int; 2014; 21(14):8451-6. PubMed ID: 24710725 [TBL] [Abstract][Full Text] [Related]
22. Advanced electrochemical treatment of real biotreated petrochemical wastewater by boron doped diamond anode: performance, kinetics, and degradation mechanism. Li H; Kuang X; Qiu C; Shen X; Zhang B; Li H Water Sci Technol; 2020 Aug; 82(4):773-786. PubMed ID: 32970628 [TBL] [Abstract][Full Text] [Related]
23. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO Xing X; Ni J; Zhu X; Jiang Y; Xia J Chemosphere; 2018 Aug; 205():361-368. PubMed ID: 29704843 [TBL] [Abstract][Full Text] [Related]
24. Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation. Panizza M; Cerisola G J Hazard Mater; 2008 May; 153(1-2):83-8. PubMed ID: 17869416 [TBL] [Abstract][Full Text] [Related]
25. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode. Yu H; Ma C; Quan X; Chen S; Zhao H Environ Sci Technol; 2009 Mar; 43(6):1935-9. PubMed ID: 19368195 [TBL] [Abstract][Full Text] [Related]
26. Degradation of antibiotics, organic matters and ammonia during secondary wastewater treatment using boron-doped diamond electro-oxidation combined with ceramic ultrafiltration. Song Y; Xiao M; Li Z; Luo Y; Zhang K; Du X; Zhang T; Wang Z; Liang H Chemosphere; 2022 Jan; 286(Pt 2):131680. PubMed ID: 34365166 [TBL] [Abstract][Full Text] [Related]
27. The electrochemical oxidation of homocysteine at boron-doped diamond electrodes with application to HPLC amperometric detection. Chailapakul O; Siangproh W; Sarada BV; Terashima C; Rao TN; Tryk DA; Fujishima A Analyst; 2002 Sep; 127(9):1164-8. PubMed ID: 12375837 [TBL] [Abstract][Full Text] [Related]
28. Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities. Ghazouani M; Akrout H; Jellali S; Bousselmi L Sci Total Environ; 2019 Jan; 647():1651-1664. PubMed ID: 30180367 [TBL] [Abstract][Full Text] [Related]
29. Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes. Gargouri B; Gargouri OD; Gargouri B; Trabelsi SK; Abdelhedi R; Bouaziz M Chemosphere; 2014 Dec; 117():309-15. PubMed ID: 25129707 [TBL] [Abstract][Full Text] [Related]
30. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process. Kraft A; Stadelmann M; Blaschke M J Hazard Mater; 2003 Oct; 103(3):247-61. PubMed ID: 14573343 [TBL] [Abstract][Full Text] [Related]
31. Effluent characteristics of advanced treatment for biotreated coking wastewater by electrochemical technology using BDD anodes. Wang C; Zhang M; Liu W; Ye M; Su F Environ Sci Pollut Res Int; 2015 May; 22(9):6827-34. PubMed ID: 25432427 [TBL] [Abstract][Full Text] [Related]
32. Boron-doped diamond anodic treatment of olive mill wastewaters: statistical analysis, kinetic modeling and biodegradability. Chatzisymeon E; Xekoukoulotakis NP; Diamadopoulos E; Katsaounis A; Mantzavinos D Water Res; 2009 Sep; 43(16):3999-4009. PubMed ID: 19423147 [TBL] [Abstract][Full Text] [Related]
33. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen. Kim YC; Sasaki S; Yano K; Ikebukuro K; Hashimoto K; Karube I Anal Chem; 2002 Aug; 74(15):3858-64. PubMed ID: 12175176 [TBL] [Abstract][Full Text] [Related]
34. Pre-treatment of soft drink wastewater with a calcium-modified zeolite to improve electrooxidation of organic matter. Victoria-Salinas RE; Martínez-Miranda V; Linares-Hernández I; Vázquez-Mejía G; Castañeda-Juárez M; Almazán-Sánchez PT J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(7):617-627. PubMed ID: 30810456 [TBL] [Abstract][Full Text] [Related]
35. Removal of organic compounds from cooling tower blowdown by electrochemical oxidation: Role of electrodes and operational parameters. Saha P; Bruning H; Wagner TV; Rijnaarts HHM Chemosphere; 2020 Nov; 259():127491. PubMed ID: 32650167 [TBL] [Abstract][Full Text] [Related]
36. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption. Zou J; Peng X; Li M; Xiong Y; Wang B; Dong F; Wang B Chemosphere; 2017 Mar; 171():332-338. PubMed ID: 28033567 [TBL] [Abstract][Full Text] [Related]
37. Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes: treatment optimization by factorial design. Deligiorgis A; Xekoukoulotakis NP; Diamadopoulos E; Mantzavinos D Water Res; 2008 Feb; 42(4-5):1229-37. PubMed ID: 17923146 [TBL] [Abstract][Full Text] [Related]
38. PbO Tang Y; Feng S; He D Water Sci Technol; 2022 Sep; 86(6):1540-1550. PubMed ID: 36178822 [TBL] [Abstract][Full Text] [Related]
39. Application of boron-doped diamond, Ti/IrO Bagastyo AY; Hidayati AS; Herumurti W; Nurhayati E Water Sci Technol; 2021 Mar; 83(6):1357-1368. PubMed ID: 33767042 [TBL] [Abstract][Full Text] [Related]
40. Chlorate induced false reduction in chemical oxygen demand (COD) based on standard dichromate method: Countermeasure and mechanism. Xiao H; Yan W; Zhao Z; Tang Y; Li Y; Yang Q; Luo S; Jiang B Water Res; 2022 Aug; 221():118732. PubMed ID: 35716411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]