BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37129888)

  • 21. Nanoscale Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Photothermal Ablation of Tumors.
    Xia R; Zheng X; Li C; Yuan X; Wang J; Xie Z; Jing X
    ACS Nano; 2021 Apr; 15(4):7638-7648. PubMed ID: 33792303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks.
    Xing C; Mei P; Mu Z; Li B; Feng X; Zhang Y; Wang B
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202201378. PubMed ID: 35267241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linker Engineering of 2D Imine Covalent Organic Frameworks for the Heterogeneous Palladium-Catalyzed Suzuki Coupling Reaction.
    Krishnaraj C; Jena HS; Rawat KS; Schmidt J; Leus K; Van Speybroeck V; Van Der Voort P
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):50923-50931. PubMed ID: 36342965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering of Surface Environment of Pd Nanoparticle Catalysts on Carbon Support with Pyrene-Thiol Ligands for Semihydrogenation of Alkynes.
    Yoshii T; Umemoto D; Kuwahara Y; Mori K; Yamashita H
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37708-37719. PubMed ID: 31538475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pt nanozyme-bridged covalent organic framework-aptamer nanoplatform for tumor targeted self-strengthening photocatalytic therapy.
    Gao P; Wei R; Chen Y; Li X; Pan W; Li N; Tang B
    Biomaterials; 2023 Jun; 297():122109. PubMed ID: 37058901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Ultrafine Palladium Phosphide Nanoparticles as Highly Active Catalyst for Chemoselective Hydrogenation of Alkynes.
    Zhao M
    Chem Asian J; 2016 Feb; 11(4):461-4. PubMed ID: 26573734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Application of Covalent Organic Frameworks for Chiral Chemistry.
    Zhuo S; Zhang X; Luo H; Wang X; Ji Y
    Macromol Rapid Commun; 2020 Oct; 41(20):e2000404. PubMed ID: 32935899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A covalent organic framework-based route to the
    Chen L; Zhang L; Chen Z; Liu H; Luque R; Li Y
    Chem Sci; 2016 Sep; 7(9):6015-6020. PubMed ID: 30034742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal Nanoparticles@Covalent Organic Framework@Enzymes: A Universal Platform for Fabricating a Metal-Enzyme Integrated Nanocatalyst.
    Zhao H; Liu G; Liu Y; Liu X; Wang H; Chen H; Gao J; Jiang Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2881-2892. PubMed ID: 34985854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts.
    Zhi Y; Wang Z; Zhang HL; Zhang Q
    Small; 2020 Jun; 16(24):e2001070. PubMed ID: 32419332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AgI modified covalent organic frameworks for effective bacterial disinfection and organic pollutant degradation under visible light irradiation.
    Liu F; Nie C; Dong Q; Ma Z; Liu W; Tong M
    J Hazard Mater; 2020 Nov; 398():122865. PubMed ID: 32470769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design, structure properties, and synthesis strategies of dual-pore covalent organic frameworks (COFs) for potent applications: A review.
    Patial S; Soni V; Kumar A; Raizada P; Ahamad T; Pham XM; Le QV; Nguyen VH; Thakur S; Singh P
    Environ Res; 2023 Feb; 218():114982. PubMed ID: 36495966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks.
    Wang M; Pan Y; Wu S; Sun Z; Wang L; Yang J; Yin Y; Li G
    Biosens Bioelectron; 2020 Dec; 169():112638. PubMed ID: 32987328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd-Cu-Ni-P Nanoparticles as a Selective and Versatile Catalyst.
    Zhao M; Ji Y; Wang M; Zhong N; Kang Z; Asao N; Jiang WJ; Chen Q
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34804-34811. PubMed ID: 28937208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A critical review of covalent organic frameworks-based sorbents in extraction methods.
    Torabi E; Mirzaei M; Bazargan M; Amiri A
    Anal Chim Acta; 2022 Sep; 1224():340207. PubMed ID: 35998988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation.
    Guo M; Jayakumar S; Luo M; Kong X; Li C; Li H; Chen J; Yang Q
    Nat Commun; 2022 Apr; 13(1):1770. PubMed ID: 35365621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-noble Nickel-Modified Covalent Organic Framework for Partial Hydrogenation of Aromatic Terminal Alkynes.
    Wang N; Liu J; Zhang M; Wang C; Li X; Ma L
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60135-60143. PubMed ID: 34904429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Raising the Asymmetric Catalytic Efficiency of Chiral Covalent Organic Frameworks by Tuning the Pore Environment.
    Zhang K; Tang X; Yang X; Wu J; Guo B; Xiao R; Xie Y; Zheng S; Jiang H; Fan J; Zhang W; Liu Y; Cai S
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10661-10670. PubMed ID: 38377517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermo-, Electro-, and Photocatalytic CO
    Wu QJ; Liang J; Huang YB; Cao R
    Acc Chem Res; 2022 Oct; 55(20):2978-2997. PubMed ID: 36153952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Olefin Metathesis in Confinement: Towards Covalent Organic Framework Scaffolds for Increased Macrocyclization Selectivity.
    Emmerling ST; Ziegler F; Fischer FR; Schoch R; Bauer M; Plietker B; Buchmeiser MR; Lotsch BV
    Chemistry; 2022 Feb; 28(8):e202104108. PubMed ID: 34882848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.