These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37129910)

  • 41. Hierarchical ZIF-decorated nanoflower-covered 3-dimensional foam for enhanced catalytic reduction of nitrogen-containing contaminants.
    Lin JY; Lee J; Oh WD; Kwon E; Tsai YC; Lisak G; Phattarapattamawong S; Hu C; Lin KA
    J Colloid Interface Sci; 2021 Nov; 602():95-104. PubMed ID: 34118608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile fabrication of plasmonic Ag/ZIF-8: an efficient catalyst for investigation of antibacterial, haemolytic and photocatalytic degradation of antibiotics.
    Subhadarshini A; Samal SK; Pattnaik A; Nanda B
    RSC Adv; 2023 Oct; 13(45):31756-31771. PubMed ID: 37908651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient dehydrogenation of a formic acid-ammonium formate mixture over Au
    Guo XT; Zhang J; Chi JC; Li ZH; Liu YC; Liu XR; Zhang SY
    RSC Adv; 2019 Feb; 9(11):5995-6002. PubMed ID: 35517262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly dispersed Pd-based pseudo-single atoms in zeolites for hydrogen generation and pollutant disposal.
    Zhang K; Wang N; Meng Y; Zhang T; Zhao P; Sun Q; Yu J
    Chem Sci; 2023 Dec; 15(1):379-388. PubMed ID: 38131096
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Step by Step Construction of Multifunctional Hollow Double Shell MNPs@MOF as a Powerful Tandem/Cascade Catalyst.
    Shi S; Yu Y; Zhang B; Zhong Y; Wang L; Wang S; Ding S; Chen C
    Front Chem; 2021; 9():738736. PubMed ID: 34604171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors.
    Javaid R; Kawasaki S; Suzuki A; Suzuki TM
    Beilstein J Org Chem; 2013; 9():1156-63. PubMed ID: 23843908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.
    Yu WY; Mullen GM; Flaherty DW; Mullins CB
    J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amine-Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid.
    Song L; Tan K; Ye Y; Zhu B; Zhang S; Huang W
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formic Acid Dehydrogenation over Ru- and Pd-Based Catalysts: Gas- vs. Liquid-Phase Reactions.
    Ruiz-López E; Ribota Peláez M; Blasco Ruz M; Domínguez Leal MI; Martínez Tejada M; Ivanova S; Centeno MÁ
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676208
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Special Magnetic Catalyst with Lignin-Reduced Au-Pd Nanoalloy.
    Han G; Li X; Li J; Wang X; Zhang YS; Sun R
    ACS Omega; 2017 Aug; 2(8):4938-4945. PubMed ID: 31457772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid.
    Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q
    Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic-scale engineering of MOF array confined Au nanoclusters for enhanced heterogeneous catalysis.
    Gao G; Xi Q; Zhang Y; Jin M; Zhao Y; Wu C; Zhou H; Guo P; Xu J
    Nanoscale; 2019 Jan; 11(3):1169-1176. PubMed ID: 30601521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogen Production from Formic Acid by In Situ Generated Ni/CdS Photocatalytic System under Visible Light Irradiation.
    Feng KW; Li Y
    ChemSusChem; 2023 May; 16(9):e202202250. PubMed ID: 36705939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts.
    Quiroz J; Barbosa ECM; Araujo TP; Fiorio JL; Wang YC; Zou YC; Mou T; Alves TV; de Oliveira DC; Wang B; Haigh SJ; Rossi LM; Camargo PHC
    Nano Lett; 2018 Nov; 18(11):7289-7297. PubMed ID: 30352162
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Green and efficient synthesis of Co-MOF-based/g-C
    Luo J; Dai Y; Xu X; Liu Y; Yang S; He H; Sun C; Xian Q
    J Colloid Interface Sci; 2022 Mar; 610():280-294. PubMed ID: 34922080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.