These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37129910)

  • 81. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction.
    Sun X; Ding Y; Feng G; Yao Q; Zhu J; Xia J; Lu ZH
    J Colloid Interface Sci; 2023 Sep; 645():676-684. PubMed ID: 37167916
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Heterostructured α-Fe
    Zhu LY; Miao XY; Ou LX; Mao LW; Yuan K; Sun S; Devi A; Lu HL
    Small; 2022 Dec; 18(50):e2204828. PubMed ID: 36310138
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Facile and Rapid Preparation of Ag@ZIF-8 for Carboxylation of Terminal Alkynes with CO
    Shi J; Zhang L; Sun N; Hu D; Shen Q; Mao F; Gao Q; Wei W
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28858-28867. PubMed ID: 31313900
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Ni-Co bimetallic decorated dodecahedral ZIF as an efficient catalyst for photoelectrochemical degradation of sulfamethoxazole coupled with hydrogen production.
    Thamilselvan A; Dang VD; Doong RA
    Sci Total Environ; 2023 May; 873():162208. PubMed ID: 36801406
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Induced CO
    Geng W; Chen W; Li G; Dong X; Song Y; Wei W; Sun Y
    ChemSusChem; 2020 Aug; 13(16):4035-4040. PubMed ID: 32652883
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Nickel -supported PdM (M = Au and Ag) nanodendrites as formate oxidation (electro)catalytic anodes for direct fuel cells and hydrogen generation at room temperature.
    Pan B; Shan S; Wang J; Tang Q; Guo L; Jin T; Wang Q; Li Z; Usman M; Chen F
    Nanoscale; 2023 Apr; 15(15):7032-7043. PubMed ID: 36974475
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Enhanced Hydrogenation Performance over Hollow Structured Co-CoO
    Tian H; Liu X; Dong L; Ren X; Liu H; Price CAH; Li Y; Wang G; Yang Q; Liu J
    Adv Sci (Weinh); 2019 Nov; 6(22):1900807. PubMed ID: 31763134
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach.
    Ida T; Nishida M; Hori Y
    J Phys Chem A; 2019 Nov; 123(44):9579-9586. PubMed ID: 31625743
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Selective Catalytic Performances of Noble Metal Nanoparticle@MOF Composites: The Concomitant Effect of Aperture Size and Structural Flexibility of MOF Matrices.
    Chen L; Zhan W; Fang H; Cao Z; Yuan C; Xie Z; Kuang Q; Zheng L
    Chemistry; 2017 Aug; 23(47):11397-11403. PubMed ID: 28600870
    [TBL] [Abstract][Full Text] [Related]  

  • 93. PdAg Bimetallic Nanoalloy-Decorated Graphene: A Nanohybrid with Unprecedented Electrocatalytic, Catalytic, and Sensing Activities.
    Bhat SA; Rashid N; Rather MA; Pandit SA; Rather GM; Ingole PP; Bhat MA
    ACS Appl Mater Interfaces; 2018 May; 10(19):16376-16389. PubMed ID: 29658695
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Flow Microreactor Synthesis of Zeolitic Imidazolate Framework (ZIF)@ZIF Core-Shell Metal-Organic Framework Particles and Their Adsorption Properties.
    Fujiwara A; Watanabe S; Miyahara MT
    Langmuir; 2021 Apr; 37(13):3858-3867. PubMed ID: 33626277
    [TBL] [Abstract][Full Text] [Related]  

  • 95. N-Doped graphene-supported PdCu nanoalloy as efficient catalyst for reducing Cr(vi) by formic acid.
    Li S; Liu L; Zhao Q; He C; Liu W
    Phys Chem Chem Phys; 2018 Jan; 20(5):3457-3464. PubMed ID: 29334086
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Exploring the Catalytic Potential of ZIF-90: Solventless and Co-Catalyst-Free Synthesis of Propylene Carbonate from Propylene Oxide and CO
    Tharun J; Mathai G; Kathalikkattil AC; Roshan R; Won YS; Cho SJ; Chang JS; Park DW
    Chempluschem; 2015 Apr; 80(4):715-721. PubMed ID: 31973424
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H
    Hijazi A; Khalaf N; Kwapinski W; Leahy JJ
    RSC Adv; 2022 May; 12(22):13673-13694. PubMed ID: 35530384
    [TBL] [Abstract][Full Text] [Related]  

  • 98. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate.
    Liu H; Yu Y; Yang W; Lei W; Gao M; Guo S
    Nanoscale; 2017 Jul; 9(27):9305-9309. PubMed ID: 28678238
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Uniform Core-Shell Microspheres of SiO
    Tsai CY; Chen YH; Lee S; Lin CH; Chang CH; Dai WT; Liu WL
    Inorg Chem; 2022 Feb; 61(6):2724-2732. PubMed ID: 35089029
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt
    Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT
    J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.