These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37130257)

  • 1. Efficient Large-Scale Virtual Screening Based on Heterogeneous Many-Core Supercomputing System.
    Liu H; Wang C; Liu P; Liu C; Wang Z; Wei Z
    IEEE J Biomed Health Inform; 2023 Jul; 27(7):3579-3588. PubMed ID: 37130257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesigning Vina@QNLM for Ultra-Large-Scale Molecular Docking and Screening on a Sunway Supercomputer.
    Lu H; Wei Z; Wang C; Guo J; Zhou Y; Wang Z; Liu H
    Front Chem; 2021; 9():750325. PubMed ID: 34778205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening.
    Yu Y; Cai C; Wang J; Bo Z; Zhu Z; Zheng H
    J Chem Theory Comput; 2023 Jun; 19(11):3336-3345. PubMed ID: 37125970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.
    Fang Y; Ding Y; Feinstein WP; Koppelman DM; Moreno J; Jarrell M; Ramanujam J; Brylinski M
    PLoS One; 2016; 11(7):e0158898. PubMed ID: 27420300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vina-GPU 2.0: Further Accelerating AutoDock Vina and Its Derivatives with Graphics Processing Units.
    Ding J; Tang S; Mei Z; Wang L; Huang Q; Hu H; Ling M; Wu J
    J Chem Inf Model; 2023 Apr; 63(7):1982-1998. PubMed ID: 36941232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating AutoDock Vina with GPUs.
    Tang S; Chen R; Lin M; Lin Q; Zhu Y; Ding J; Hu H; Ling M; Wu J
    Molecules; 2022 May; 27(9):. PubMed ID: 35566391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.
    Trott O; Olson AJ
    J Comput Chem; 2010 Jan; 31(2):455-61. PubMed ID: 19499576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attracting Cavities 2.0: Improving the Flexibility and Robustness for Small-Molecule Docking.
    Röhrig UF; Goullieux M; Bugnon M; Zoete V
    J Chem Inf Model; 2023 Jun; 63(12):3925-3940. PubMed ID: 37285197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular docking-based computational platform for high-throughput virtual screening.
    Zhang B; Li H; Yu K; Jin Z
    CCF Trans High Perform Comput; 2022; 4(1):63-74. PubMed ID: 35039800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term.
    Zheng L; Meng J; Jiang K; Lan H; Wang Z; Lin M; Li W; Guo H; Wei Y; Mu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters.
    Abreu RM; Froufe HJ; Queiroz MJ; Ferreira IC
    J Cheminform; 2010 Oct; 2(1):10. PubMed ID: 21029419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening.
    Quiroga R; Villarreal MA
    PLoS One; 2016; 11(5):e0155183. PubMed ID: 27171006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening.
    Tai HK; Jusoh SA; Siu SWI
    J Cheminform; 2018 Dec; 10(1):62. PubMed ID: 30552524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.
    Feinstein WP; Brylinski M
    J Cheminform; 2015; 7():18. PubMed ID: 26082804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Cuckoo Search and Differential Evolution Approach to Protein⁻Ligand Docking.
    Lin H; Siu SWI
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusing Docking Scoring Functions Improves the Virtual Screening Performance for Discovering Parkinson's Disease Dual Target Ligands.
    Perez-Castillo Y; Helguera AM; Cordeiro MNDS; Tejera E; Paz-Y-Mino C; Sanchez-Rodriguez A; Borges F; Cruz-Monteagudo M
    Curr Neuropharmacol; 2017 Nov; 15(8):1107-1116. PubMed ID: 28067172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design.
    Lee HS; Im W
    J Comput Chem; 2019 Jun; 40(17):1622-1632. PubMed ID: 30829435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast, accurate, and reliable molecular docking with QuickVina 2.
    Alhossary A; Handoko SD; Mu Y; Kwoh CK
    Bioinformatics; 2015 Jul; 31(13):2214-6. PubMed ID: 25717194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dockey: a modern integrated tool for large-scale molecular docking and virtual screening.
    Du L; Geng C; Zeng Q; Huang T; Tang J; Chu Y; Zhao K
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36764832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.