These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37130364)

  • 41. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase.
    Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of Rifampicin Inactivation in Nocardia farcinica.
    Abdelwahab H; Martin Del Campo JS; Dai Y; Adly C; El-Sohaimy S; Sobrado P
    PLoS One; 2016; 11(10):e0162578. PubMed ID: 27706151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interactions of pyridine nucleotides with redox forms of the flavin-containing NADH peroxidase from Streptococcus faecalis.
    Poole LB; Claiborne A
    J Biol Chem; 1986 Nov; 261(31):14525-33. PubMed ID: 3095321
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A rate-limiting conformational change of the flavin in p-hydroxybenzoate hydroxylase is necessary for ligand exchange and catalysis: studies with 8-mercapto- and 8-hydroxy-flavins.
    Ortiz-Maldonado M; Ballou DP; Massey V
    Biochemistry; 2001 Jan; 40(4):1091-101. PubMed ID: 11170433
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The reaction kinetics of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1 provide an understanding of the para-hydroxylation enzyme catalytic cycle.
    Sucharitakul J; Tongsook C; Pakotiprapha D; van Berkel WJ; Chaiyen P
    J Biol Chem; 2013 Dec; 288(49):35210-21. PubMed ID: 24129570
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase.
    Pimviriyakul P; Chaiyen P
    FEBS J; 2023 Jan; 290(1):176-195. PubMed ID: 35942637
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase.
    Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.
    Wongnate T; Surawatanawong P; Visitsatthawong S; Sucharitakul J; Scrutton NS; Chaiyen P
    J Am Chem Soc; 2014 Jan; 136(1):241-53. PubMed ID: 24368083
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure and function of a flavin-dependent S-monooxygenase from garlic (
    Valentino H; Campbell AC; Schuermann JP; Sultana N; Nam HG; LeBlanc S; Tanner JJ; Sobrado P
    J Biol Chem; 2020 Aug; 295(32):11042-11055. PubMed ID: 32527723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural insights into a flavin-dependent dehalogenase HadA explain catalysis and substrate inhibition via quadruple π-stacking.
    Pimviriyakul P; Jaruwat A; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021 Aug; 297(2):100952. PubMed ID: 34252455
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of free energy relationships to probe the individual steps of hydroxylation of p-hydroxybenzoate hydroxylase: studies with a series of 8-substituted flavins.
    Ortiz-Maldonado M; Ballou DP; Massey V
    Biochemistry; 1999 Jun; 38(25):8124-37. PubMed ID: 10387058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tyr217 and His213 are important for substrate binding and hydroxylation of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1.
    Sucharitakul J; Medhanavyn D; Pakotiprapha D; van Berkel WJ; Chaiyen P
    FEBS J; 2016 Mar; 283(5):860-81. PubMed ID: 26709612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic mechanism of pyranose 2-oxidase from trametes multicolor.
    Prongjit M; Sucharitakul J; Wongnate T; Haltrich D; Chaiyen P
    Biochemistry; 2009 May; 48(19):4170-80. PubMed ID: 19317444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme.
    Tittmann K; Schröder K; Golbik R; McCourt J; Kaplun A; Duggleby RG; Barak Z; Chipman DM; Hübner G
    Biochemistry; 2004 Jul; 43(27):8652-61. PubMed ID: 15236573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of 8-substituted-FAD analogues to investigate the hydroxylation mechanism of the flavoprotein 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Chaiyen P; Sucharitakul J; Svasti J; Entsch B; Massey V; Ballou DP
    Biochemistry; 2004 Apr; 43(13):3933-43. PubMed ID: 15049701
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.