These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37130379)

  • 1. (Fe, Cr)(OH)
    Zhang S; Cheng L; Zuo X; Cai D; Tong K; Hu Y; Ni J
    Environ Sci Technol; 2023 May; 57(19):7516-7525. PubMed ID: 37130379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous Coprecipitation of Nanocrystals with Metals on Substrates.
    Hu Y; Zhang S; Zhou Z; Cao Z
    Acc Chem Res; 2024 May; 57(9):1254-1263. PubMed ID: 38488208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coprecipitation of Fe/Cr Hydroxides at Organic-Water Interfaces: Functional Group Richness and (De)protonation Control Amounts and Compositions of Coprecipitates.
    Hu Y; Jiang X; Zhang S; Cai D; Zhou Z; Liu C; Zuo X; Lee SS
    Environ Sci Technol; 2024 May; 58(19):8501-8509. PubMed ID: 38696244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous and Heterogeneous (Fex, Cr1-x)(OH)3 Precipitation: Implications for Cr Sequestration.
    Dai C; Zuo X; Cao B; Hu Y
    Environ Sci Technol; 2016 Feb; 50(4):1741-9. PubMed ID: 26765070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Insights into the Role of Natural Organic Matter in Fe-Cr Coprecipitation: Importance of Molecular Selectivity.
    Zhu S; Luo W; Mo Y; Ding K; Zhang M; Jin C; Wang S; Chao Y; Tang YT; Qiu R
    Environ Sci Technol; 2023 Sep; 57(37):13991-14001. PubMed ID: 37523249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coprecipitation of Fe/Cr Hydroxides with Organics: Roles of Organic Properties in Composition and Stability of the Coprecipitates.
    Deng N; Li Z; Zuo X; Chen J; Shakiba S; Louie SM; Rixey WG; Hu Y
    Environ Sci Technol; 2021 Apr; 55(8):4638-4647. PubMed ID: 33760589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coprecipitation of arsenate with metal oxides: nature, mineralogy, and reactivity of aluminum precipitates.
    Violante A; Ricciardella M; Del Gaudio S; Pigna M
    Environ Sci Technol; 2006 Aug; 40(16):4961-7. PubMed ID: 16955893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of layered Fe(II)-hydroxides during Fe(II) sorption onto clay and metal-oxide substrates.
    Zhu Y; Elzinga EJ
    Environ Sci Technol; 2014 May; 48(9):4937-45. PubMed ID: 24749478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II).
    Zhao C; Hu L; Zhang C; Wang S; Wang X; Huo Z
    Environ Pollut; 2021 Oct; 287():117303. PubMed ID: 34010759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-removal of hexavalent chromium through copper precipitation in synthetic wastewater.
    Sun JM; Shang C; Huang JC
    Environ Sci Technol; 2003 Sep; 37(18):4281-7. PubMed ID: 14524465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Adsorption and Degradation of Cr(VI) and Cd(II) Ions from Aqueous Solution by Silica-Coated Fe (0) Nanoparticles.
    Li Y; Ma H; Ren B; Li T
    J Anal Methods Chem; 2013; 2013():649503. PubMed ID: 24455425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of humic acid with nanosized inorganic oxides.
    Yang K; Lin D; Xing B
    Langmuir; 2009 Apr; 25(6):3571-6. PubMed ID: 19708146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles.
    Neubauer E; Schenkeveld WD; Plathe KL; Rentenberger C; von der Kammer F; Kraemer SM; Hofmann T
    Sci Total Environ; 2013 Sep; 461-462():108-16. PubMed ID: 23712121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents.
    Van Hoecke K; De Schamphelaere KA; Ramirez-Garcia S; Van der Meeren P; Smagghe G; Janssen CR
    Environ Int; 2011 Aug; 37(6):1118-25. PubMed ID: 21377208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of Fe-organic matter associations via coprecipitation versus adsorption.
    Chen C; Dynes JJ; Wang J; Sparks DL
    Environ Sci Technol; 2014 Dec; 48(23):13751-9. PubMed ID: 25350793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface functionalization of bamboo leave mediated synthesized SiO
    Sharma P; Prakash J; Palai T; Kaushal R
    Environ Res; 2022 Nov; 214(Pt 1):113761. PubMed ID: 35793724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater.
    Sun JM; Zhu WT; Huang JC
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):379-85. PubMed ID: 17120827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cr(VI) reduction by Fe(II) sorbed to silica surfaces.
    Nelson J; Joe-Wong C; Maher K
    Chemosphere; 2019 Nov; 234():98-107. PubMed ID: 31203046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.