These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37130448)

  • 1. Construction of whey protein gels prepared by three methods to stabilize high internal phase Pickering emulsions loaded with CoQ10 under different pH.
    Li X; Zhang M; Zhou L; Liu J; Marchioni E
    Food Chem; 2023 Sep; 421():136192. PubMed ID: 37130448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin.
    Lv P; Wang D; Dai L; Wu X; Gao Y; Yuan F
    Food Res Int; 2020 Jun; 132():109032. PubMed ID: 32331631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of high internal phase Pickering emulsions stabilized by bamboo fungus protein gels with the effect of pH.
    Zhang M; Zhou L; Yang F; Yao J; Ma Y; Liu J
    Food Chem; 2022 Feb; 369():130954. PubMed ID: 34469839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High internal phase pickering emulsions stabilized by zein/whey protein nanofibril complexes: Preparation and lycopene loading.
    Xia S; Wang Q; Rao Z; Lei X; Zhao J; Lei L; Ming J
    Food Chem; 2024 Sep; 452():139564. PubMed ID: 38718455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking.
    Wu J; Shi M; Li W; Zhao L; Wang Z; Yan X; Norde W; Li Y
    Colloids Surf B Biointerfaces; 2015 Mar; 127():96-104. PubMed ID: 25660092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels.
    Zamani S; Malchione N; Selig MJ; Abbaspourrad A
    Food Funct; 2018 Feb; 9(2):982-990. PubMed ID: 29334398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes.
    Wang L; Liu M; Guo P; Zhang H; Jiang L; Xia N; Zheng L; Cui Q; Hua S
    Food Chem; 2023 Jul; 414():135718. PubMed ID: 36827783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, Physicochemical Stability, and Microstructure of Coenzyme Q10 Pickering Emulsions Stabilized by Resveratrol-Loaded Composite Nanoparticles.
    Wei Y; Yu Z; Lin K; Yang S; Tai K; Liu J; Mao L; Yuan F; Gao Y
    J Agric Food Chem; 2020 Feb; 68(5):1405-1418. PubMed ID: 31940190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on stabilized mechanism of high internal phase Pickering emulsions based on commercial yeast proteins: Modulating the characteristics of Pickering particle via sonication.
    Cheng T; Zhang G; Sun F; Guo Y; Ramakrishna R; Zhou L; Guo Z; Wang Z
    Ultrason Sonochem; 2024 Mar; 104():106843. PubMed ID: 38471387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: influence of thermal treatment.
    Sarkar A; Murray B; Holmes M; Ettelaie R; Abdalla A; Yang X
    Soft Matter; 2016 Apr; 12(15):3558-69. PubMed ID: 26959339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein oxidation affected the encapsulation properties of rice bran protein fibril-high internal phase pickering emulsions: Enhanced stability and bioaccessibility of β-carotene.
    Zhao M; Wu X; Tan H; Wu W
    Food Res Int; 2024 Sep; 192():114779. PubMed ID: 39147467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of protein-polyphenol particles to stabilize high internal phase Pickering emulsions by polyphenols' structure.
    Chen Y; Yao M; Peng S; Fang Y; Wan L; Shang W; Xiang D; Zhang W
    Food Chem; 2023 Dec; 428():136773. PubMed ID: 37423104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of high internal phase pickering emulsions stabilized by heat-induced electrostatic complexes particles: Growth nucleation mechanism and interface architecture.
    Wang L; Xiao B; Guo Q; Guo P; Zhang H; Chi Y; Xia N; Jiang L; Cui Q
    Food Chem; 2023 Feb; 402():134512. PubMed ID: 36303394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the Structural Network That Confers Stability to High Internal Phase Pickering Emulsions by Cross-Linked Soy Protein Microgels and Their
    Wen J; Zhang Y; Jin H; Sui X; Jiang L
    J Agric Food Chem; 2020 Sep; 68(36):9796-9803. PubMed ID: 32786850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Viability of Lactobacillus plantarum as Probiotics through Encapsulation with High Internal Phase Emulsions Stabilized with Whey Protein Isolate Microgels.
    Su J; Wang X; Li W; Chen L; Zeng X; Huang Q; Hu B
    J Agric Food Chem; 2018 Nov; 66(46):12335-12343. PubMed ID: 30380846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor microenvironment-responsive, high internal phase Pickering emulsions stabilized by lignin/chitosan oligosaccharide particles for synergistic cancer therapy.
    Chen K; Qian Y; Wang C; Yang D; Qiu X; Binks BP
    J Colloid Interface Sci; 2021 Jun; 591():352-362. PubMed ID: 33618293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of rice bran rancidity on the interfacial adsorption properties of rice bran protein fibril aggregates and stability of high internal phase Pickering emulsions.
    Zhao M; Li F; Li H; Lin Q; Zhou X; Wu X; Wu W
    Food Chem; 2024 Jun; 443():138611. PubMed ID: 38309025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles.
    Liu Q; Chang X; Shan Y; Fu F; Ding S
    J Sci Food Agric; 2021 Jul; 101(9):3630-3643. PubMed ID: 33275778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High internal phase Pickering emulsions stabilized by a cod protein-chitosan nanocomplex for astaxanthin delivery.
    Zhang L; Zhou C; Na X; Chen Y; Tan M
    Food Funct; 2021 Nov; 12(23):11872-11882. PubMed ID: 34735562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of carboxymethyl cellulose on the stability, rheology, and curcumin bioaccessibility of high internal phase Pickering emulsions.
    Wang W; Ji S; Xia Q
    Carbohydr Polym; 2024 Jun; 334():122041. PubMed ID: 38553238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.