These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37130514)

  • 1. Motor decoding from the posterior parietal cortex using deep neural networks.
    Borra D; Filippini M; Ursino M; Fattori P; Magosso E
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37130514
    [No Abstract]   [Full Text] [Related]  

  • 2. Convolutional neural networks reveal properties of reach-to-grasp encoding in posterior parietal cortex.
    Borra D; Filippini M; Ursino M; Fattori P; Magosso E
    Comput Biol Med; 2024 Apr; 172():108188. PubMed ID: 38492454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similar neural states, but dissimilar decoding patterns for motor control in parietal cortex.
    Vaccari FE; Diomedi S; De Vitis M; Filippini M; Fattori P
    Netw Neurosci; 2024; 8(2):486-516. PubMed ID: 38952818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Coding of Eye Position in Posterior Parietal Cortex despite Context-Dependent Tuning.
    McFadyen JR; Heider B; Karkhanis AN; Cloherty SL; Muñoz F; Siegel RM; Morris AP
    J Neurosci; 2022 May; 42(20):4116-4130. PubMed ID: 35410881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual model transfer learning to compensate for individual variability in brain-computer interface.
    Kim JS; Kim H; Chung CK; Kim JS
    Comput Methods Programs Biomed; 2024 Sep; 254():108294. PubMed ID: 38943984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speech decoding from stereo-electroencephalography (sEEG) signals using advanced deep learning methods.
    Wu X; Wellington S; Fu Z; Zhang D
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38885688
    [No Abstract]   [Full Text] [Related]  

  • 7. Jump-GRS: a multi-phase approach to structured pruning of neural networks for neural decoding.
    Wu X; Lin DT; Chen R; Bhattacharyya SS
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37429288
    [No Abstract]   [Full Text] [Related]  

  • 8. A cryptography-based approach for movement decoding.
    Dyer EL; Gheshlaghi Azar M; Perich MG; Fernandes HL; Naufel S; Miller LE; Körding KP
    Nat Biomed Eng; 2017 Dec; 1(12):967-976. PubMed ID: 31015712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Motor Brain-Computer Interfaces Using Intracranial Electroencephalography Based on Surface Electrodes and Depth Electrodes.
    Wu X; Metcalfe B; He S; Tan H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2408-2431. PubMed ID: 38949928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface.
    Forenzo D; Zhu H; Shanahan J; Lim J; He B
    bioRxiv; 2024 Apr; ():. PubMed ID: 37905046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding.
    Nakagome S; Luu TP; He Y; Ravindran AS; Contreras-Vidal JL
    Sci Rep; 2020 Mar; 10(1):4372. PubMed ID: 32152333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibrating Bayesian Decoders of Neural Spiking Activity.
    Wei 魏赣超 G; Tajik Mansouri زینب تاجیک منصوری Z; Wang 王晓婧 X; Stevenson IH
    J Neurosci; 2024 May; 44(18):. PubMed ID: 38538143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroscopic brain dynamics beyond contralateral primary motor cortex for movement prediction.
    Yeo TS; Kim JS; Kim HJ; Chung CK
    Neuroimage; 2024 Aug; 297():120727. PubMed ID: 39069222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latent Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces.
    Pandarinath C; Ames KC; Russo AA; Farshchian A; Miller LE; Dyer EL; Kao JC
    J Neurosci; 2018 Oct; 38(44):9390-9401. PubMed ID: 30381431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface.
    Trautmann EM; O'Shea DJ; Sun X; Marshel JH; Crow A; Hsueh B; Vesuna S; Cofer L; Bohner G; Allen W; Kauvar I; Quirin S; MacDougall M; Chen Y; Whitmire MP; Ramakrishnan C; Sahani M; Seidemann E; Ryu SI; Deisseroth K; Shenoy KV
    Nat Commun; 2021 Jun; 12(1):3689. PubMed ID: 34140486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal Activity Distributed in Multiple Cortical Areas during Voluntary Control of the Native Arm or a Brain-Computer Interface.
    Liu Z; Schieber MH
    eNeuro; 2020; 7(5):. PubMed ID: 33060178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models.
    Berezutskaya J; Freudenburg ZV; Vansteensel MJ; Aarnoutse EJ; Ramsey NF; van Gerven MAJ
    J Neural Eng; 2023 Sep; 20(5):. PubMed ID: 37467739
    [No Abstract]   [Full Text] [Related]  

  • 18. Decoding Imagined and Spoken Phrases From Non-invasive Neural (MEG) Signals.
    Dash D; Ferrari P; Wang J
    Front Neurosci; 2020; 14():290. PubMed ID: 32317917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian Decoder Representing Single-Directional Connectivity between Neurons in Brain-Machine Interface.
    Chen S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain control of bimanual movement enabled by recurrent neural networks.
    Deo DR; Willett FR; Avansino DT; Hochberg LR; Henderson JM; Shenoy KV
    Sci Rep; 2024 Jan; 14(1):1598. PubMed ID: 38238386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.