These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37130954)

  • 1. Muscle co-activation in the elderly contributes to control of hip and knee joint torque and endpoint force.
    Kubota K; Yokoyama M; Hanawa H; Miyazawa T; Hirata K; Onitsuka K; Fujino T; Kanemura N
    Sci Rep; 2023 May; 13(1):7139. PubMed ID: 37130954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle activity determined by cosine tuning with a nontrivial preferred direction during isometric force exertion by lower limb.
    Nozaki D; Nakazawa K; Akai M
    J Neurophysiol; 2005 May; 93(5):2614-24. PubMed ID: 15647398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hip joint angle on concentric knee extension torque.
    Ema R; Wakahara T; Kawakami Y
    J Electromyogr Kinesiol; 2017 Dec; 37():141-146. PubMed ID: 29101912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Torque interaction among adjacent joints due to the action of biarticular muscles.
    Nozaki D
    Med Sci Sports Exerc; 2009 Jan; 41(1):205-9. PubMed ID: 19092687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the Functional Roles of Knee Joint Muscles from Internal Joint Moments.
    Flaxman TE; Alkjær T; Simonsen EB; Krogsgaard MR; Benoit DL
    Med Sci Sports Exerc; 2017 Mar; 49(3):527-537. PubMed ID: 27755353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty of knee joint muscle activity during knee joint torque exertion: the significance of controlling adjacent joint torque.
    Nozaki D; Nakazawa K; Akai M
    J Appl Physiol (1985); 2005 Sep; 99(3):1093-103. PubMed ID: 15860683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in knee joint angle affect torque steadiness differently in young and older individuals.
    Wu R; Delahunt E; Ditroilo M; Lowery MM; Segurado R; De Vito G
    J Electromyogr Kinesiol; 2019 Aug; 47():49-56. PubMed ID: 31121550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique activation of the quadriceps femoris during single- and multi-joint exercises.
    Ema R; Sakaguchi M; Akagi R; Kawakami Y
    Eur J Appl Physiol; 2016 May; 116(5):1031-41. PubMed ID: 27032805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of Sagittal Plane Hip Position on Lower-Extremity Muscle Activity and Torque Output.
    Glaviano NR; Bazett-Jones DM
    J Sport Rehabil; 2020 Nov; 30(4):573-581. PubMed ID: 33238241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular Activation of the Vastus Intermedius Muscle during Isometric Hip Flexion.
    Saito A; Akima H
    PLoS One; 2015; 10(10):e0141146. PubMed ID: 26488742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of agonist and antagonist muscles in explaining isometric knee extension torque variation with hip joint angle.
    Bampouras TM; Reeves ND; Baltzopoulos V; Maganaris CN
    Eur J Appl Physiol; 2017 Oct; 117(10):2039-2045. PubMed ID: 28803367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles.
    Worrell TW; Karst G; Adamczyk D; Moore R; Stanley C; Steimel B; Steimel S
    J Orthop Sports Phys Ther; 2001 Dec; 31(12):730-40. PubMed ID: 11767248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental knee pain impairs joint torque and rate of force development in isometric and isokinetic muscle activation.
    Rice DA; Mannion J; Lewis GN; McNair PJ; Fort L
    Eur J Appl Physiol; 2019 Sep; 119(9):2065-2073. PubMed ID: 31332518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of agonist and antagonist muscles at different joint angles during maximal isometric efforts.
    Kubo K; Tsunoda N; Kanehisa H; Fukunaga T
    Eur J Appl Physiol; 2004 Mar; 91(2-3):349-52. PubMed ID: 14648124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG-angle relationship of the hamstring muscles during maximum knee flexion.
    Onishi H; Yagi R; Oyama M; Akasaka K; Ihashi K; Handa Y
    J Electromyogr Kinesiol; 2002 Oct; 12(5):399-406. PubMed ID: 12223173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different knee flexion angles with a constant hip and knee torque on the muscle forces and neuromuscular activities of hamstrings and gluteus maximus muscles.
    Motomura Y; Tateuchi H; Nakao S; Shimizu I; Kato T; Kondo Y; Ichihashi N
    Eur J Appl Physiol; 2019 Feb; 119(2):399-407. PubMed ID: 30430278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contribution of neuromuscular activation, muscle size, and muscle quality to maximum strength output of the thigh muscles in young individuals.
    Yoshiko A; Watanabe K; Akima H
    Physiol Rep; 2023 Jan; 11(1):e15563. PubMed ID: 36597223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knee extensor torque and quadriceps femoris EMG during perceptually-guided isometric contractions.
    Pincivero DM; Coelho AJ; Campy RM; Salfetnikov Y; Suter E
    J Electromyogr Kinesiol; 2003 Apr; 13(2):159-67. PubMed ID: 12586521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Hip Flexion Angle on Unilateral and Bilateral Nordic Hamstring Exercise Torque and High-Density Electromyography Activity.
    Hegyi A; Lahti J; Giacomo JP; Gerus P; Cronin NJ; Morin JB
    J Orthop Sports Phys Ther; 2019 Aug; 49(8):584-592. PubMed ID: 30913969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship?
    Lanza MB; Balshaw TG; Folland JP
    Exp Physiol; 2017 Aug; 102(8):962-973. PubMed ID: 28594464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.