These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37131210)

  • 1. Low-cost and automated phenotyping system "Phenomenon" for multi-sensor in situ monitoring in plant in vitro culture.
    Bethge H; Winkelmann T; Lüdeke P; Rath T
    Plant Methods; 2023 May; 19(1):42. PubMed ID: 37131210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review.
    Humplík JF; Lazár D; Husičková A; Spíchal L
    Plant Methods; 2015; 11():29. PubMed ID: 25904970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image-Based High-Throughput Phenotyping in Horticultural Crops.
    Abebe AM; Kim Y; Kim J; Kim SL; Baek J
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach.
    Liebisch F; Kirchgessner N; Schneider D; Walter A; Hund A
    Plant Methods; 2015; 11():9. PubMed ID: 25793008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.
    Busemeyer L; Mentrup D; Möller K; Wunder E; Alheit K; Hahn V; Maurer HP; Reif JC; Würschum T; Müller J; Rahe F; Ruckelshausen A
    Sensors (Basel); 2013 Feb; 13(3):2830-47. PubMed ID: 23447014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system.
    Kirchgessner N; Liebisch F; Yu K; Pfeifer J; Friedli M; Hund A; Walter A
    Funct Plant Biol; 2016 Feb; 44(1):154-168. PubMed ID: 32480554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings.
    Lee JH; Lee U; Yoo JH; Lee TS; Jung JH; Kim HS
    Plant Methods; 2024 Mar; 20(1):44. PubMed ID: 38493119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements.
    Banerjee BP; Spangenberg G; Kant S
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach.
    Han L; Yang G; Yang H; Xu B; Li Z; Yang X
    Front Plant Sci; 2018; 9():1638. PubMed ID: 30483291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Image-Based Screening Method to Study Water-Deficit Response and Recovery of Barley Populations Using Canopy Dynamics Phenotyping and Simple Metabolite Profiling.
    Marchetti CF; Ugena L; Humplík JF; Polák M; Ćavar Zeljković S; Podlešáková K; Fürst T; De Diego N; Spíchal L
    Front Plant Sci; 2019; 10():1252. PubMed ID: 31681365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.
    Sun S; Li C; Paterson AH; Jiang Y; Xu R; Robertson JS; Snider JL; Chee PW
    Front Plant Sci; 2018; 9():16. PubMed ID: 29403522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating RGB Imaging and Multispectral Active and Hyperspectral Passive Sensing for Assessing Early Plant Vigor in Winter Wheat.
    Prey L; von Bloh M; Schmidhalter U
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.
    Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S
    Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LiDARPheno - A Low-Cost LiDAR-Based 3D Scanning System for Leaf Morphological Trait Extraction.
    Panjvani K; Dinh AV; Wahid KA
    Front Plant Sci; 2019; 10():147. PubMed ID: 30815008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-cost 3D systems: suitable tools for plant phenotyping.
    Paulus S; Behmann J; Mahlein AK; Plümer L; Kuhlmann H
    Sensors (Basel); 2014 Feb; 14(2):3001-18. PubMed ID: 24534920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.
    Mahlein AK
    Plant Dis; 2016 Feb; 100(2):241-251. PubMed ID: 30694129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.