BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37131653)

  • 1. Acute myeloid leukemia stratifies as two clinically relevant sphingolipidomic subtypes.
    Paudel BB; Tan SF; Fox TE; Ung J; Shaw J; Dunton W; Lee I; Sharma A; Viny AD; Barth BM; Tallman MS; Cabot M; Garrett-Bakelman FE; Levine RL; Kester M; Claxton D; Feith DJ; Janes KA; Loughran TP
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia.
    Awada H; Durmaz A; Gurnari C; Kishtagari A; Meggendorfer M; Kerr CM; Kuzmanovic T; Durrani J; Shreve J; Nagata Y; Radivoyevitch T; Advani AS; Ravandi F; Carraway HE; Nazha A; Haferlach C; Saunthararajah Y; Scott J; Visconte V; Kantarjian H; Kadia T; Sekeres MA; Haferlach T; Maciejewski JP
    Blood; 2021 Nov; 138(19):1885-1895. PubMed ID: 34075412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell RNA sequencing distinctly characterizes the wide heterogeneity in pediatric mixed phenotype acute leukemia.
    Mumme HL; Raikar SS; Bhasin SS; Thomas BE; Lawrence T; Weinzierl EP; Pang Y; DeRyckere D; Gawad C; Wechsler DS; Porter CC; Castellino SM; Graham DK; Bhasin M
    Genome Med; 2023 Oct; 15(1):83. PubMed ID: 37845689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD8 + T cell-based molecular subtypes with heterogeneous immune landscapes and clinical significance in acute myeloid leukemia.
    Zhong F; Yao F; Jiang J; Yu X; Liu J; Huang B; Wang X
    Inflamm Res; 2024 Mar; 73(3):329-344. PubMed ID: 38195768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipids and the cancer stemness regulatory system in acute myeloid leukemia.
    Lim INX; Nagree MS; Xie SZ
    Essays Biochem; 2022 Sep; 66(4):333-344. PubMed ID: 35996953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia.
    Nguyen CH; Bauer K; Hackl H; Schlerka A; Koller E; Hladik A; Stoiber D; Zuber J; Staber PB; Hoelbl-Kovacic A; Purton LE; Grebien F; Wieser R
    Cell Death Dis; 2019 Dec; 10(12):944. PubMed ID: 31822659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia.
    Ung J; Tan SF; Fox TE; Shaw JJP; Vass LR; Costa-Pinheiro P; Garrett-Bakelman FE; Keng MK; Sharma A; Claxton DF; Levine RL; Tallman MS; Cabot MC; Kester M; Feith DJ; Loughran TP
    Blood Rev; 2022 Sep; 55():100950. PubMed ID: 35487785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KIT D816 mutated/CBF-negative acute myeloid leukemia: a poor-risk subtype associated with systemic mastocytosis.
    Jawhar M; Döhner K; Kreil S; Schwaab J; Shoumariyeh K; Meggendorfer M; Span LLF; Fuhrmann S; Naumann N; Horny HP; Sotlar K; Kubuschok B; von Bubnoff N; Spiekermann K; Heuser M; Metzgeroth G; Fabarius A; Klein S; Hofmann WK; Kluin-Nelemans HC; Haferlach T; Döhner H; Cross NCP; Sperr WR; Valent P; Reiter A
    Leukemia; 2019 May; 33(5):1124-1134. PubMed ID: 30635631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic Prediction of Cytogenetically Normal Acute Myeloid Leukemia Based on a Gene Expression Model.
    Yang L; Zhang H; Yang X; Lu T; Ma S; Cheng H; Yen K; Cheng T
    Front Oncol; 2021; 11():659201. PubMed ID: 34123815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery.
    Simonetti G; Padella A; do Valle IF; Fontana MC; Fonzi E; Bruno S; Baldazzi C; Guadagnuolo V; Manfrini M; Ferrari A; Paolini S; Papayannidis C; Marconi G; Franchini E; Zuffa E; Laginestra MA; Zanotti F; Astolfi A; Iacobucci I; Bernardi S; Sazzini M; Ficarra E; Hernandez JM; Vandenberghe P; Cools J; Bullinger L; Ottaviani E; Testoni N; Cavo M; Haferlach T; Castellani G; Remondini D; Martinelli G
    Cancer; 2019 Mar; 125(5):712-725. PubMed ID: 30480765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of the KIT
    Craig JW; Hasserjian RP; Kim AS; Aster JC; Pinkus GS; Hornick JL; Steensma DP; Coleman Lindsley R; DeAngelo DJ; Morgan EA
    Mod Pathol; 2020 Jun; 33(6):1135-1145. PubMed ID: 31896808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin-Based Classification of Genetically Heterogeneous AMLs into Two Distinct Subtypes with Diverse Stemness Phenotypes.
    Yi G; Wierenga ATJ; Petraglia F; Narang P; Janssen-Megens EM; Mandoli A; Merkel A; Berentsen K; Kim B; Matarese F; Singh AA; Habibi E; Prange KHM; Mulder AB; Jansen JH; Clarke L; Heath S; van der Reijden BA; Flicek P; Yaspo ML; Gut I; Bock C; Schuringa JJ; Altucci L; Vellenga E; Stunnenberg HG; Martens JHA
    Cell Rep; 2019 Jan; 26(4):1059-1069.e6. PubMed ID: 30673601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of tumor antigens and immune subtypes of acute myeloid leukemia for mRNA vaccine development.
    Wang F
    Clin Transl Oncol; 2023 Jul; 25(7):2204-2223. PubMed ID: 36781600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloid enzymes profile related to the immunophenotypic characteristics of blast cells from patients with acute myeloid leukemia (AML) at diagnosis.
    Klobusicka M; Kusenda J; Babusikova O
    Neoplasma; 2005; 52(3):211-8. PubMed ID: 15875082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-based molecular subtypes and differentiation hierarchies improve the classification framework of acute myeloid leukemia.
    Cheng WY; Li JF; Zhu YM; Lin XJ; Wen LJ; Zhang F; Zhang YL; Zhao M; Fang H; Wang SY; Lin XJ; Qiao N; Yin W; Zhang JN; Dai YT; Jiang L; Sun XJ; Xu Y; Zhang TT; Chen SN; Zhu HH; Chen Z; Jin J; Wu DP; Shen Y; Chen SJ
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2211429119. PubMed ID: 36442087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIVEP3 cooperates with ferroptosis gene signatures to confer adverse prognosis in acute myeloid leukemia.
    Zhang X; Zhang X; Liu K; Li W; Wang J; Liu P; Ma W
    Cancer Med; 2022 Dec; 11(24):5050-5065. PubMed ID: 35535739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hospital-based case-control study of acute myeloid leukemia in Shanghai: analysis of personal characteristics, lifestyle and environmental risk factors by subtypes of the WHO classification.
    Wong O; Harris F; Yiying W; Hua F
    Regul Toxicol Pharmacol; 2009 Dec; 55(3):340-52. PubMed ID: 19703505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Characterization of the Highest Risk Adult Patients With Acute Myeloid Leukemia (AML) Through Multi-Omics Clustering.
    Nguyen T; Pepper JW; Nguyen C; Fan Y; Hu Y; Chen Q; Yan C; Meerzaman D
    Front Genet; 2021; 12():777094. PubMed ID: 34777485
    [No Abstract]   [Full Text] [Related]  

  • 19. A Bioinformatics View on Acute Myeloid Leukemia Surface Molecules by Combined Bayesian and ABC Analysis.
    Thrun MC; Mack EKM; Neubauer A; Haferlach T; Frech M; Ultsch A; Brendel C
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36354555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined immune and DDR pathway classifier: A novel pathway-based classification aimed at tailoring personalized therapies for acute myeloid leukemia patients.
    Huang Y; Zhang Y; Zhou Q; Teng Y; Sui M; Zhang F
    Comput Biol Med; 2023 Aug; 162():107093. PubMed ID: 37269679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.