BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37131717)

  • 1. Single-cell temporal dynamics reveals the relative contributions of transcription and degradation to cell-type specific gene expression in zebrafish embryos.
    Fishman L; Nechooshtan G; Erhard F; Regev A; Farrell JA; Rabani M
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq.
    Fishman L; Modak A; Nechooshtan G; Razin T; Erhard F; Regev A; Farrell JA; Rabani M
    Nat Commun; 2024 Apr; 15(1):3104. PubMed ID: 38600066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SLAMseq resolves the kinetics of maternal and zygotic gene expression during early zebrafish embryogenesis.
    Bhat P; Cabrera-Quio LE; Herzog VA; Fasching N; Pauli A; Ameres SL
    Cell Rep; 2023 Feb; 42(2):112070. PubMed ID: 36757845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos.
    Wragg J; Müller F
    Adv Genet; 2016; 95():161-94. PubMed ID: 27503357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLAM-Drop-seq reveals mRNA kinetic rates throughout the cell cycle.
    Liu H; Arsiè R; Schwabe D; Schilling M; Minia I; Alles J; Boltengagen A; Kocks C; Falcke M; Friedman N; Landthaler M; Rajewsky N
    Mol Syst Biol; 2023 Oct; 19(10):1-23. PubMed ID: 38778223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq.
    Lott SE; Villalta JE; Schroth GP; Luo S; Tonkin LA; Eisen MB
    PLoS Biol; 2011 Feb; 9(2):e1000590. PubMed ID: 21346796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mature maternal mRNAs are longer than zygotic ones and have complex degradation kinetics in sea urchin.
    Gildor T; Malik A; Sher N; Ben-Tabou de-Leon S
    Dev Biol; 2016 Jun; 414(1):121-31. PubMed ID: 27085752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-binding proteins in mouse oocytes and embryos: expression of genes encoding Y box, DEAD box RNA helicase, and polyA binding proteins.
    Paynton BV
    Dev Genet; 1998; 23(4):285-98. PubMed ID: 9883581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs.
    Du ZQ; Liang H; Liu XM; Liu YH; Wang C; Yang CX
    Sci Rep; 2021 Jul; 11(1):14393. PubMed ID: 34257377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sperm-borne microRNA-34c regulates maternal mRNA degradation and preimplantation embryonic development in mice.
    Cui L; Fang L; Zhuang L; Shi B; Lin CP; Ye Y
    Reprod Biol Endocrinol; 2023 Apr; 21(1):40. PubMed ID: 37101140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode.
    Shen-Orr SS; Pilpel Y; Hunter CP
    Genome Biol; 2010; 11(6):R58. PubMed ID: 20515465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conserved regulatory basis of mRNA contributions to the early Drosophila embryo differs between the maternal and zygotic genomes.
    Omura CS; Lott SE
    PLoS Genet; 2020 Mar; 16(3):e1008645. PubMed ID: 32226006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics?
    Gerovska D; Araúzo-Bravo MJ
    Mol Hum Reprod; 2016 Mar; 22(3):208-25. PubMed ID: 26740066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The knockdown of the maternal estrogen receptor 2a (esr2a) mRNA affects embryo transcript contents and larval development in zebrafish.
    Celeghin A; Benato F; Pikulkaew S; Rabbane MG; Colombo L; Dalla Valle L
    Gen Comp Endocrinol; 2011 May; 172(1):120-9. PubMed ID: 21199655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal contributions to gastrulation in zebrafish.
    Solnica-Krezel L
    Curr Top Dev Biol; 2020; 140():391-427. PubMed ID: 32591082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The landscape of regulatory genes in brain-wide neuronal phenotypes of a vertebrate brain.
    Zhang H; Wang H; Shen X; Jia X; Yu S; Qiu X; Wang Y; Du J; Yan J; He J
    Elife; 2021 Dec; 10():. PubMed ID: 34895465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluate the developmental competence of human 8-cell embryos by single-cell RNA sequencing.
    Wang W; Zhao M; Zuo H; Zhang J; Liu B; Chen F; Ji P; Liu G; Gao S; Shang W; Zhang L
    Reprod Fertil; 2023 Apr; 4(2):. PubMed ID: 36943184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the zebrafish maternal and paternal transcriptomes.
    Harvey SA; Sealy I; Kettleborough R; Fenyes F; White R; Stemple D; Smith JC
    Development; 2013 Jul; 140(13):2703-10. PubMed ID: 23720042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of lineage-specific zygotic transcripts in early Caenorhabditis elegans embryos.
    Robertson SM; Shetty P; Lin R
    Dev Biol; 2004 Dec; 276(2):493-507. PubMed ID: 15581881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4.
    Reim G; Brand M
    Development; 2006 Jul; 133(14):2757-70. PubMed ID: 16775002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.