These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37131753)
41. Control of breathing by interacting pontine and pulmonary feedback loops. Molkov YI; Bacak BJ; Dick TE; Rybak IA Front Neural Circuits; 2013; 7():16. PubMed ID: 23408512 [TBL] [Abstract][Full Text] [Related]
42. Predictors and clinical outcomes of silent hypoxia in COVID-19 patients, a single-center retrospective cohort study. Alhusain F; Alromaih A; Alhajress G; Alsaghyir A; Alqobaisi A; Alaboodi T; Alsalamah M J Infect Public Health; 2021 Nov; 14(11):1595-1599. PubMed ID: 34627057 [TBL] [Abstract][Full Text] [Related]
43. The pathophysiology of 'happy' hypoxemia in COVID-19. Dhont S; Derom E; Van Braeckel E; Depuydt P; Lambrecht BN Respir Res; 2020 Jul; 21(1):198. PubMed ID: 32723327 [TBL] [Abstract][Full Text] [Related]
44. Breathing and Oxygen Carrying Capacity in Ts65Dn and Down Syndrome. DeRuisseau LR; Receno CN; Cunningham C; Bates ML; Goodell M; Liang C; Eassa B; Pascolla J; DeRuisseau KC Function (Oxf); 2023; 4(6):zqad058. PubMed ID: 37954975 [TBL] [Abstract][Full Text] [Related]
45. A carotid body-brainstem neural circuit mediates sighing in hypoxia. Yao Y; Chen J; Li X; Chen ZF; Li P Curr Biol; 2023 Mar; 33(5):827-837.e4. PubMed ID: 36750092 [TBL] [Abstract][Full Text] [Related]
46. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration. Molkov YI; Shevtsova NA; Park C; Ben-Tal A; Smith JC; Rubin JE; Rybak IA PLoS One; 2014; 9(10):e109894. PubMed ID: 25302708 [TBL] [Abstract][Full Text] [Related]
47. The Importance of Happy Hypoxemia in COVID-19. Haryalchi K; Heidarzadeh A; Abedinzade M; Olangian-Tehrani S; Ghazanfar Tehran S Anesth Pain Med; 2021 Feb; 11(1):e111872. PubMed ID: 34221943 [TBL] [Abstract][Full Text] [Related]
48. Unraveling the Underlying Molecular Mechanism of 'Silent Hypoxia' in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway. Devaux CA; Lagier JC J Clin Med; 2023 Mar; 12(6):. PubMed ID: 36983445 [TBL] [Abstract][Full Text] [Related]
49. Considerations for target oxygen saturation in COVID-19 patients: are we under-shooting? Shenoy N; Luchtel R; Gulani P BMC Med; 2020 Aug; 18(1):260. PubMed ID: 32814566 [TBL] [Abstract][Full Text] [Related]
50. A peripheral oxygen sensor provides direct activation of an identified respiratory CPG neuron in Lymnaea. Bell HJ; Inoue T; Syed NI Adv Exp Med Biol; 2008; 605():25-9. PubMed ID: 18085241 [TBL] [Abstract][Full Text] [Related]
51. Respiratory, cardiovascular, and metabolic adjustments to hypoxemia during sleep in piglets. Côté A; Porras H Can J Physiol Pharmacol; 1998; 76(7-8):747-55. PubMed ID: 10030455 [TBL] [Abstract][Full Text] [Related]
52. Spontaneous autoresuscitation in a model of respiratory control. Diekman CO; Wilson CG; Thomas PJ Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6669-72. PubMed ID: 23367459 [TBL] [Abstract][Full Text] [Related]
53. Conceptions of the pathophysiology of happy hypoxemia in COVID-19. Dhont S; Derom E; Van Braeckel E; Depuydt P; Lambrecht BN Respir Res; 2021 Jan; 22(1):12. PubMed ID: 33419436 [TBL] [Abstract][Full Text] [Related]
54. Hypoxia-induced modulation of the respiratory CPG. Bell HJ; Syed NI Front Biosci (Landmark Ed); 2009 Jan; 14(10):3825-35. PubMed ID: 19273313 [TBL] [Abstract][Full Text] [Related]
55. Risk factors associated with asymptomatic hypoxemia among COVID-19 patients: a retrospective study using the nationwide Japanese registry, COVIREGI-JP. Akiyama Y; Morioka S; Asai Y; Sato L; Suzuki S; Saito S; Matsunaga N; Hayakawa K; Ohmagari N J Infect Public Health; 2022 Mar; 15(3):312-314. PubMed ID: 35124327 [TBL] [Abstract][Full Text] [Related]
56. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)]. ; ; Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959 [TBL] [Abstract][Full Text] [Related]
57. Graded hypoxia acts through a network of distributed peripheral oxygen chemoreceptors to produce changes in respiratory behaviour and plasticity. Janes TA; Xu F; Syed NI Eur J Neurosci; 2015 Jul; 42(2):1858-71. PubMed ID: 25951609 [TBL] [Abstract][Full Text] [Related]
58. Silent hypoxia in COVID-19: pathomechanism and possible management strategy. Rahman A; Tabassum T; Araf Y; Al Nahid A; Ullah MA; Hosen MJ Mol Biol Rep; 2021 Apr; 48(4):3863-3869. PubMed ID: 33891272 [TBL] [Abstract][Full Text] [Related]
59. Clinical predictors of hypoxaemia in Gambian children with acute lower respiratory tract infection: prospective cohort study. Usen S; Weber M; Mulholland K; Jaffar S; Oparaugo A; Omosigho C; Adegbola R; Greenwood B BMJ; 1999 Jan; 318(7176):86-91. PubMed ID: 9880280 [TBL] [Abstract][Full Text] [Related]
60. Neurophysiology of the motor output pattern generator for breathing. Wyman RJ Fed Proc; 1976 Jul; 35(9):2013-23. PubMed ID: 776702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]