These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37131781)

  • 21. Comparing data-driven physiological denoising approaches for resting-state fMRI: implications for the study of aging.
    Golestani AM; Chen JJ
    Front Neurosci; 2024; 18():1223230. PubMed ID: 38379761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonreplication of functional connectivity differences in autism spectrum disorder across multiple sites and denoising strategies.
    He Y; Byrge L; Kennedy DP
    Hum Brain Mapp; 2020 Apr; 41(5):1334-1350. PubMed ID: 31916675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
    Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM
    Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. XCP-D: A Robust Pipeline for the post-processing of fMRI data.
    Mehta K; Salo T; Madison T; Adebimpe A; Bassett DS; Bertolero M; Cieslak M; Covitz S; Houghton A; Keller AS; Luo A; Miranda-Dominguez O; Nelson SM; Shafiei G; Shanmugan S; Shinohara RT; Sydnor VJ; Feczko E; Fair DA; Satterthwaite TD
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sparse Representation-Based Denoising for High-Resolution Brain Activation and Functional Connectivity Modeling: A Task fMRI Study.
    Jeong S; Li X; Yang J; Li Q; Tarokh V
    IEEE Access; 2020; 8():36728-36740. PubMed ID: 35528966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion.
    Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR
    Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noise removal in resting-state and task fMRI: functional connectivity and activation maps.
    De Blasi B; Caciagli L; Storti SF; Galovic M; Koepp M; Menegaz G; Barnes A; Galazzo IB
    J Neural Eng; 2020 Aug; 17(4):046040. PubMed ID: 32663803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI.
    Steel A; Garcia BD; Silson EH; Robertson CE
    Neuroimage; 2022 Dec; 264():119723. PubMed ID: 36328274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing.
    Phạm DĐ; McDonald DJ; Ding L; Nebel MB; Mejia AF
    Neuroimage; 2023 Apr; 270():119972. PubMed ID: 36842522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of automated ICA-based denoising of fMRI data in acute stroke patients.
    Carone D; Licenik R; Suri S; Griffanti L; Filippini N; Kennedy J
    Neuroimage Clin; 2017; 16():23-31. PubMed ID: 28736698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved resting state functional connectivity sensitivity and reproducibility using a multiband multi-echo acquisition.
    Cohen AD; Yang B; Fernandez B; Banerjee S; Wang Y
    Neuroimage; 2021 Jan; 225():117461. PubMed ID: 33069864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methods for cleaning the BOLD fMRI signal.
    Caballero-Gaudes C; Reynolds RC
    Neuroimage; 2017 Jul; 154():128-149. PubMed ID: 27956209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional connectivity MRI quality control procedures in CONN.
    Morfini F; Whitfield-Gabrieli S; Nieto-Castañón A
    Front Neurosci; 2023; 17():1092125. PubMed ID: 37034165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
    Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem.
    Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A
    Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.
    Hallquist MN; Hwang K; Luna B
    Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of nuisance removal for functional MRI of rodent brain.
    Chuang KH; Lee HL; Li Z; Chang WT; Nasrallah FA; Yeow LY; Singh KKDR
    Neuroimage; 2019 Mar; 188():694-709. PubMed ID: 30593905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locally Low-Rank Denoising of Multi-Echo Functional MRI Data With Application in Resting-State Analysis.
    Meyer NK; Kang D; Ahmed Z; In MH; Shu Y; Huston J; Bernstein MA; Trzasko JD
    Top Magn Reson Imaging; 2023 Oct; 32(5):37-49. PubMed ID: 37796647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting-state and task-based fMRI data.
    Waller L; Erk S; Pozzi E; Toenders YJ; Haswell CC; Büttner M; Thompson PM; Schmaal L; Morey RA; Walter H; Veer IM
    Hum Brain Mapp; 2022 Jun; 43(9):2727-2742. PubMed ID: 35305030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.