These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37131783)

  • 1. RNA covariation at helix-level resolution for the identification of evolutionarily conserved RNA structure.
    Rivas E
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the power of sequence covariation for detecting conserved RNA structure.
    Rivas E; Clements J; Eddy SR
    Bioinformatics; 2020 May; 36(10):3072-3076. PubMed ID: 32031582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs.
    Rivas E; Clements J; Eddy SR
    Nat Methods; 2017 Jan; 14(1):45-48. PubMed ID: 27819659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thirteen dubious ways to detect conserved structural RNAs.
    Gao W; Yang A; Rivas E
    IUBMB Life; 2023 Jun; 75(6):471-492. PubMed ID: 36495545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary conservation of RNA sequence and structure.
    Rivas E
    Wiley Interdiscip Rev RNA; 2021 Sep; 12(5):e1649. PubMed ID: 33754485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural constraints identified with covariation analysis in ribosomal RNA.
    Shang L; Xu W; Ozer S; Gutell RR
    PLoS One; 2012; 7(6):e39383. PubMed ID: 22724009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic Analysis with Improved Parameters Reveals Conservation in lncRNA Structures.
    Tavares RCA; Pyle AM; Somarowthu S
    J Mol Biol; 2019 Apr; 431(8):1592-1603. PubMed ID: 30890332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique tertiary and neighbor interactions determine conservation patterns of Cis Watson-Crick A/G base-pairs.
    Sponer J; Mokdad A; Sponer JE; Spacková N; Leszczynski J; Leontis NB
    J Mol Biol; 2003 Jul; 330(5):967-78. PubMed ID: 12860120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY; Jossinet F; Westhof E
    Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA structure prediction using positive and negative evolutionary information.
    Rivas E
    PLoS Comput Biol; 2020 Oct; 16(10):e1008387. PubMed ID: 33125376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying and seeing beyond multiple sequence alignment errors using intra-molecular protein covariation.
    Dickson RJ; Wahl LM; Fernandes AD; Gloor GB
    PLoS One; 2010 Jun; 5(6):e11082. PubMed ID: 20596526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules.
    Leontis NB; Stombaugh J; Westhof E
    Biochimie; 2002 Sep; 84(9):961-73. PubMed ID: 12458088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of residue pairing to beta-sheet formation: conservation and covariation of amino acid residue pairs on antiparallel beta-strands.
    Mandel-Gutfreund Y; Zaremba SM; Gregoret LM
    J Mol Biol; 2001 Feb; 305(5):1145-59. PubMed ID: 11162120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
    Takahashi S; Sugimoto N
    Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring covariation in RNA alignments: physical realism improves information measures.
    Lindgreen S; Gardner PP; Krogh A
    Bioinformatics; 2006 Dec; 22(24):2988-95. PubMed ID: 17038338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sampled ensemble neutrality as a feature to classify potential structured RNAs.
    Pei S; Anthony JS; Meyer MM
    BMC Genomics; 2015 Feb; 16(1):35. PubMed ID: 25649229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust prediction of consensus secondary structures using averaged base pairing probability matrices.
    Kiryu H; Kin T; Asai K
    Bioinformatics; 2007 Feb; 23(4):434-41. PubMed ID: 17182698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency and isostericity of RNA base pairs.
    Stombaugh J; Zirbel CL; Westhof E; Leontis NB
    Nucleic Acids Res; 2009 Apr; 37(7):2294-312. PubMed ID: 19240142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.
    Li Y; Shi X; Liang Y; Xie J; Zhang Y; Ma Q
    BMC Bioinformatics; 2017 Jan; 18(1):51. PubMed ID: 28109252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.